Voir la notice de l'article provenant de la source Numdam
In this article we develop a posteriori error estimates for second order linear elliptic problems with point sources in two- and three-dimensional domains. We prove a global upper bound and a local lower bound for the error measured in a weighted Sobolev space. The weight considered is a (positive) power of the distance to the support of the Dirac delta source term, and belongs to the Muckenhoupt's class A2. The theory hinges on local approximation properties of either Clément or Scott-Zhang interpolation operators, without need of modifications, and makes use of weighted estimates for fractional integrals and maximal functions. Numerical experiments with an adaptive algorithm yield optimal meshes and very good effectivity indices.
@article{M2AN_2014__48_6_1557_0, author = {Agnelli, Juan Pablo and Garau, Eduardo M. and Morin, Pedro}, title = {\protect\emph{A posteriori }error estimates for elliptic problems with {Dirac} measure terms in weighted spaces}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1557--1581}, publisher = {EDP-Sciences}, volume = {48}, number = {6}, year = {2014}, doi = {10.1051/m2an/2014010}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2014010/} }
TY - JOUR AU - Agnelli, Juan Pablo AU - Garau, Eduardo M. AU - Morin, Pedro TI - A posteriori error estimates for elliptic problems with Dirac measure terms in weighted spaces JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2014 SP - 1557 EP - 1581 VL - 48 IS - 6 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2014010/ DO - 10.1051/m2an/2014010 LA - en ID - M2AN_2014__48_6_1557_0 ER -
%0 Journal Article %A Agnelli, Juan Pablo %A Garau, Eduardo M. %A Morin, Pedro %T A posteriori error estimates for elliptic problems with Dirac measure terms in weighted spaces %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2014 %P 1557-1581 %V 48 %N 6 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2014010/ %R 10.1051/m2an/2014010 %G en %F M2AN_2014__48_6_1557_0
Agnelli, Juan Pablo; Garau, Eduardo M.; Morin, Pedro. A posteriori error estimates for elliptic problems with Dirac measure terms in weighted spaces. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 48 (2014) no. 6, pp. 1557-1581. doi: 10.1051/m2an/2014010
Cité par Sources :