Voir la notice de l'article provenant de la source Numdam
We derive asymptotic formulas for the solutions of the mixed boundary value problem for the Poisson equation on the union of a thin cylindrical plate and several thin cylindrical rods. One of the ends of each rod is set into a hole in the plate and the other one is supplied with the Dirichlet condition. The Neumann conditions are imposed on the whole remaining part of the boundary. Elements of the junction are assumed to have contrasting properties so that the small parameter, i.e. the relative thickness, appears in the differential equation, too, while the asymptotic structures crucially depend on the contrastness ratio. Asymptotic error estimates are derived in anisotropic weighted Sobolev norms.
@article{M2AN_2014__48_5_1495_0, author = {Bunoiu, R. and Cardone, G. and Nazarov, S. A.}, title = {Scalar boundary value problems on junctions of thin rods and plates}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1495--1528}, publisher = {EDP-Sciences}, volume = {48}, number = {5}, year = {2014}, doi = {10.1051/m2an/2014007}, mrnumber = {3264363}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2014007/} }
TY - JOUR AU - Bunoiu, R. AU - Cardone, G. AU - Nazarov, S. A. TI - Scalar boundary value problems on junctions of thin rods and plates JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2014 SP - 1495 EP - 1528 VL - 48 IS - 5 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2014007/ DO - 10.1051/m2an/2014007 LA - en ID - M2AN_2014__48_5_1495_0 ER -
%0 Journal Article %A Bunoiu, R. %A Cardone, G. %A Nazarov, S. A. %T Scalar boundary value problems on junctions of thin rods and plates %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2014 %P 1495-1528 %V 48 %N 5 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2014007/ %R 10.1051/m2an/2014007 %G en %F M2AN_2014__48_5_1495_0
Bunoiu, R.; Cardone, G.; Nazarov, S. A. Scalar boundary value problems on junctions of thin rods and plates. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 48 (2014) no. 5, pp. 1495-1528. doi: 10.1051/m2an/2014007
Cité par Sources :