Voir la notice de l'article provenant de la source Numdam
We consider an initial-boundary value problem for a generalized 2D time-dependent Schrödinger equation (with variable coefficients) on a semi-infinite strip. For the Crank-Nicolson-type finite-difference scheme with approximate or discrete transparent boundary conditions (TBCs), the Strang-type splitting with respect to the potential is applied. For the resulting method, the unconditional uniform in time L2-stability is proved. Due to the splitting, an effective direct algorithm using FFT is developed now to implement the method with the discrete TBC for general potential. Numerical results on the tunnel effect for rectangular barriers are included together with the detailed practical error analysis confirming nice properties of the method.
@article{M2AN_2014__48_6_1681_0, author = {Ducomet, Bernard and Zlotnik, Alexander and Zlotnik, Ilya}, title = {The splitting in potential {Crank-Nicolson} scheme with discrete transparent boundary conditions for the {Schr\"odinger} equation on a semi-infinite strip}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1681--1699}, publisher = {EDP-Sciences}, volume = {48}, number = {6}, year = {2014}, doi = {10.1051/m2an/2014004}, mrnumber = {3264369}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2014004/} }
TY - JOUR AU - Ducomet, Bernard AU - Zlotnik, Alexander AU - Zlotnik, Ilya TI - The splitting in potential Crank-Nicolson scheme with discrete transparent boundary conditions for the Schrödinger equation on a semi-infinite strip JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2014 SP - 1681 EP - 1699 VL - 48 IS - 6 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2014004/ DO - 10.1051/m2an/2014004 LA - en ID - M2AN_2014__48_6_1681_0 ER -
%0 Journal Article %A Ducomet, Bernard %A Zlotnik, Alexander %A Zlotnik, Ilya %T The splitting in potential Crank-Nicolson scheme with discrete transparent boundary conditions for the Schrödinger equation on a semi-infinite strip %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2014 %P 1681-1699 %V 48 %N 6 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2014004/ %R 10.1051/m2an/2014004 %G en %F M2AN_2014__48_6_1681_0
Ducomet, Bernard; Zlotnik, Alexander; Zlotnik, Ilya. The splitting in potential Crank-Nicolson scheme with discrete transparent boundary conditions for the Schrödinger equation on a semi-infinite strip. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 48 (2014) no. 6, pp. 1681-1699. doi: 10.1051/m2an/2014004
Cité par Sources :