A localized orthogonal decomposition method for semi-linear elliptic problems
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 48 (2014) no. 5, pp. 1331-1349

Voir la notice de l'article provenant de la source Numdam

In this paper we propose and analyze a localized orthogonal decomposition (LOD) method for solving semi-linear elliptic problems with heterogeneous and highly variable coefficient functions. This Galerkin-type method is based on a generalized finite element basis that spans a low dimensional multiscale space. The basis is assembled by performing localized linear fine-scale computations on small patches that have a diameter of order H | log (H) | where H is the coarse mesh size. Without any assumptions on the type of the oscillations in the coefficients, we give a rigorous proof for a linear convergence of the H1-error with respect to the coarse mesh size even for rough coefficients. To solve the corresponding system of algebraic equations, we propose an algorithm that is based on a damped Newton scheme in the multiscale space.

DOI : 10.1051/m2an/2013141
Classification : 35J15, 65N12, 65N30
Keywords: finite element method, a priori error estimate, convergence, multiscale method, non-linear, computational homogenization, upscaling
@article{M2AN_2014__48_5_1331_0,
     author = {Henning, Patrick and M\r{a}lqvist, Axel and Peterseim, Daniel},
     title = {A localized orthogonal decomposition method for semi-linear elliptic problems},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1331--1349},
     publisher = {EDP-Sciences},
     volume = {48},
     number = {5},
     year = {2014},
     doi = {10.1051/m2an/2013141},
     mrnumber = {3264356},
     zbl = {1300.35011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013141/}
}
TY  - JOUR
AU  - Henning, Patrick
AU  - Målqvist, Axel
AU  - Peterseim, Daniel
TI  - A localized orthogonal decomposition method for semi-linear elliptic problems
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2014
SP  - 1331
EP  - 1349
VL  - 48
IS  - 5
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013141/
DO  - 10.1051/m2an/2013141
LA  - en
ID  - M2AN_2014__48_5_1331_0
ER  - 
%0 Journal Article
%A Henning, Patrick
%A Målqvist, Axel
%A Peterseim, Daniel
%T A localized orthogonal decomposition method for semi-linear elliptic problems
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2014
%P 1331-1349
%V 48
%N 5
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013141/
%R 10.1051/m2an/2013141
%G en
%F M2AN_2014__48_5_1331_0
Henning, Patrick; Målqvist, Axel; Peterseim, Daniel. A localized orthogonal decomposition method for semi-linear elliptic problems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 48 (2014) no. 5, pp. 1331-1349. doi: 10.1051/m2an/2013141

Cité par Sources :