Voir la notice de l'article provenant de la source Numdam
In this paper, we use the adapted periodic unfolding method to study the homogenization and corrector problems for the parabolic problem in a two-component composite with ε-periodic connected inclusions. The condition imposed on the interface is that the jump of the solution is proportional to the conormal derivative via a function of order εγ with γ ≤ -1. We give the homogenization results which include those obtained by Jose in [Rev. Roum. Math. Pures Appl. 54 (2009) 189-222]. We also get the corrector results.
@article{M2AN_2014__48_5_1279_0, author = {Yang, Zhanying}, title = {The periodic unfolding method for a class of parabolic problems with imperfect interfaces}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1279--1302}, publisher = {EDP-Sciences}, volume = {48}, number = {5}, year = {2014}, doi = {10.1051/m2an/2013139}, mrnumber = {3264354}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013139/} }
TY - JOUR AU - Yang, Zhanying TI - The periodic unfolding method for a class of parabolic problems with imperfect interfaces JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2014 SP - 1279 EP - 1302 VL - 48 IS - 5 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013139/ DO - 10.1051/m2an/2013139 LA - en ID - M2AN_2014__48_5_1279_0 ER -
%0 Journal Article %A Yang, Zhanying %T The periodic unfolding method for a class of parabolic problems with imperfect interfaces %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2014 %P 1279-1302 %V 48 %N 5 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013139/ %R 10.1051/m2an/2013139 %G en %F M2AN_2014__48_5_1279_0
Yang, Zhanying. The periodic unfolding method for a class of parabolic problems with imperfect interfaces. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 48 (2014) no. 5, pp. 1279-1302. doi : 10.1051/m2an/2013139. http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013139/
[1] Correctors for the homogenization of the wave and heat equations. J. Math. Pures Appl. 71 (1992) 197-231. | Zbl | MR
, and ,[2] An Introduction to Homogenization. Oxford University Press (1999). | Zbl | MR
and ,[3] The periodic unfolding method in domains with holes. SIAM J. Math. Anal. 44 (2012) 718-760. | Zbl | MR
, , , and ,[4] Periodic unfolding and homogenization. C.R. Acad. Sci., Paris, Sér. I, Math. 335 (2002) 99-104. | Zbl | MR
, and ,[5] The periodic unfolding method in homogenization. SIAM J. Math. Anal. 40 (2008) 1585-1620. | Zbl | MR
, and ,[6] The periodic unfolding method in perforated domains. Port. Math. (N.S.) 63 (2006) 467-496. | Zbl | MR
, and ,[7] Conduction of heat in solids. Clarendon Press, Oxford (1947). | Zbl | MR
and ,[8] Some corrector results for composites with imperfect interface. Rend. Mat. Appl., VII. Ser. 26 (2006) 189-209. | Zbl | MR
,[9] P. Donato, L. Faella and S Monsurrò, Homogenization of the wave equation in composites with imperfect interface: A memory effect. J. Math. Pures Appl. 87 (2007) 119-143. | Zbl | MR
[10] Correctors for the homogenization of a class of hyperbolic equations with imperfect interfaces. SIAM J. Math. Anal. 40 (2009) 1952-1978. | Zbl | MR
, and ,[11] Corrector results for a parabolic problem with a memory effect. ESAIM: M2AN 44 (2010) 421-454. | Zbl | MR | mathdoc-id
and ,[12] Homogenization of two heat conductors with an interfacial contact resistance. Anal. Appl. 2 (2004) 247-273. | Zbl | MR
and ,[13] The periodic unfolding method for a class of imperfect transmission problems. J. Math. Sci. 176 (2011) 891-927. | Zbl | MR
, and ,[14] Homogenization and correctors for the heat equation in perforated domains. Ricerche Mat. 50 (2001) 115-144. | Zbl | MR
and ,[15] The periodic unfolding method for the wave equations in domains with holes. Adv. Math. Sci. Appl. 22 (2012) 521-551. | Zbl | MR
and ,[16] Memory Effects Arising in the Homogenization of Composites with Inclusions, Topics on Mathematics for Smart Systems. World Sci. Publ., Hackensack, USA (2007) 107-121. | Zbl | MR
and ,[17] Homogénéisation et correcteurs pour quelques problèmes hyperboliques, Ph.D. Thesis, University of Paris VI, France (2009).
,[18] Homogenization of a parabolic problem with an imperfect interface. Rev. Roum. Math. Pures Appl. 54 (2009) 189-222. | Zbl | MR
,[19] Homogenization of a two-component composite with interfacial thermal barrier. Adv. Math. Sci. Appl. 13 (2003) 43-63. | Zbl | MR
,[20] Erratum for the paper Homogenization of a two-component composite with interfacial thermal barrier. Adv. Math. Sci. Appl. 14 (2004) 375-377. | Zbl | MR
,[21] Quelques remarques sur l'homogénéisation, in Functional Analysis and Numerical Analysis, Proc. Japan-France Seminar, 1976. Jpn. Soc. Promot. Sci. (1978) 468-482.
,Cité par Sources :