Voir la notice de l'article provenant de la source Numdam
In this paper, we use the adapted periodic unfolding method to study the homogenization and corrector problems for the parabolic problem in a two-component composite with ε-periodic connected inclusions. The condition imposed on the interface is that the jump of the solution is proportional to the conormal derivative via a function of order εγ with γ ≤ -1. We give the homogenization results which include those obtained by Jose in [Rev. Roum. Math. Pures Appl. 54 (2009) 189-222]. We also get the corrector results.
@article{M2AN_2014__48_5_1279_0, author = {Yang, Zhanying}, title = {The periodic unfolding method for a class of parabolic problems with imperfect interfaces}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1279--1302}, publisher = {EDP-Sciences}, volume = {48}, number = {5}, year = {2014}, doi = {10.1051/m2an/2013139}, mrnumber = {3264354}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013139/} }
TY - JOUR AU - Yang, Zhanying TI - The periodic unfolding method for a class of parabolic problems with imperfect interfaces JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2014 SP - 1279 EP - 1302 VL - 48 IS - 5 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013139/ DO - 10.1051/m2an/2013139 LA - en ID - M2AN_2014__48_5_1279_0 ER -
%0 Journal Article %A Yang, Zhanying %T The periodic unfolding method for a class of parabolic problems with imperfect interfaces %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2014 %P 1279-1302 %V 48 %N 5 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013139/ %R 10.1051/m2an/2013139 %G en %F M2AN_2014__48_5_1279_0
Yang, Zhanying. The periodic unfolding method for a class of parabolic problems with imperfect interfaces. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 48 (2014) no. 5, pp. 1279-1302. doi: 10.1051/m2an/2013139
Cité par Sources :