The periodic unfolding method for a class of parabolic problems with imperfect interfaces
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 48 (2014) no. 5, pp. 1279-1302.

Voir la notice de l'article provenant de la source Numdam

In this paper, we use the adapted periodic unfolding method to study the homogenization and corrector problems for the parabolic problem in a two-component composite with ε-periodic connected inclusions. The condition imposed on the interface is that the jump of the solution is proportional to the conormal derivative via a function of order εγ with γ ≤ -1. We give the homogenization results which include those obtained by Jose in [Rev. Roum. Math. Pures Appl. 54 (2009) 189-222]. We also get the corrector results.

DOI : 10.1051/m2an/2013139
Classification : 35B27, 35K20, 82B24
Keywords: periodic unfolding method, heat equation, interface problems, homogenization, correctors
@article{M2AN_2014__48_5_1279_0,
     author = {Yang, Zhanying},
     title = {The periodic unfolding method for a class of parabolic problems with imperfect interfaces},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1279--1302},
     publisher = {EDP-Sciences},
     volume = {48},
     number = {5},
     year = {2014},
     doi = {10.1051/m2an/2013139},
     mrnumber = {3264354},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013139/}
}
TY  - JOUR
AU  - Yang, Zhanying
TI  - The periodic unfolding method for a class of parabolic problems with imperfect interfaces
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2014
SP  - 1279
EP  - 1302
VL  - 48
IS  - 5
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013139/
DO  - 10.1051/m2an/2013139
LA  - en
ID  - M2AN_2014__48_5_1279_0
ER  - 
%0 Journal Article
%A Yang, Zhanying
%T The periodic unfolding method for a class of parabolic problems with imperfect interfaces
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2014
%P 1279-1302
%V 48
%N 5
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013139/
%R 10.1051/m2an/2013139
%G en
%F M2AN_2014__48_5_1279_0
Yang, Zhanying. The periodic unfolding method for a class of parabolic problems with imperfect interfaces. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 48 (2014) no. 5, pp. 1279-1302. doi : 10.1051/m2an/2013139. http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013139/

[1] S. Brahim-Otsman, G.A. Francfort and F. Murat, Correctors for the homogenization of the wave and heat equations. J. Math. Pures Appl. 71 (1992) 197-231. | Zbl | MR

[2] D. Cioranescu and P. Donato, An Introduction to Homogenization. Oxford University Press (1999). | Zbl | MR

[3] D. Cioranescu, A. Damlamian, P. Donato, G. Griso and R. Zaki, The periodic unfolding method in domains with holes. SIAM J. Math. Anal. 44 (2012) 718-760. | Zbl | MR

[4] D. Cioranescu, A. Damlamian and G. Griso, Periodic unfolding and homogenization. C.R. Acad. Sci., Paris, Sér. I, Math. 335 (2002) 99-104. | Zbl | MR

[5] D. Cioranescu, A. Damlamian and G. Griso, The periodic unfolding method in homogenization. SIAM J. Math. Anal. 40 (2008) 1585-1620. | Zbl | MR

[6] D. Cioranescu, P. Donato and R. Zaki, The periodic unfolding method in perforated domains. Port. Math. (N.S.) 63 (2006) 467-496. | Zbl | MR

[7] H.S. Carslaw and J.C. Jaeger, Conduction of heat in solids. Clarendon Press, Oxford (1947). | Zbl | MR

[8] P. Donato, Some corrector results for composites with imperfect interface. Rend. Mat. Appl., VII. Ser. 26 (2006) 189-209. | Zbl | MR

[9] P. Donato, L. Faella and S Monsurrò, Homogenization of the wave equation in composites with imperfect interface: A memory effect. J. Math. Pures Appl. 87 (2007) 119-143. | Zbl | MR

[10] P. Donato, L. Faella and S. Monsurrò, Correctors for the homogenization of a class of hyperbolic equations with imperfect interfaces. SIAM J. Math. Anal. 40 (2009) 1952-1978. | Zbl | MR

[11] P. Donato and E.C. Jose, Corrector results for a parabolic problem with a memory effect. ESAIM: M2AN 44 (2010) 421-454. | Zbl | MR | mathdoc-id

[12] P. Donato and S. Monsurrò, Homogenization of two heat conductors with an interfacial contact resistance. Anal. Appl. 2 (2004) 247-273. | Zbl | MR

[13] P. Donato, K.H. Le Nguyen and R. Tardieu, The periodic unfolding method for a class of imperfect transmission problems. J. Math. Sci. 176 (2011) 891-927. | Zbl | MR

[14] P. Donato and A. Nabil, Homogenization and correctors for the heat equation in perforated domains. Ricerche Mat. 50 (2001) 115-144. | Zbl | MR

[15] P. Donato and Z. Yang, The periodic unfolding method for the wave equations in domains with holes. Adv. Math. Sci. Appl. 22 (2012) 521-551. | Zbl | MR

[16] L. Faella and S. Monsurrò, Memory Effects Arising in the Homogenization of Composites with Inclusions, Topics on Mathematics for Smart Systems. World Sci. Publ., Hackensack, USA (2007) 107-121. | Zbl | MR

[17] F. Gaveau, Homogénéisation et correcteurs pour quelques problèmes hyperboliques, Ph.D. Thesis, University of Paris VI, France (2009).

[18] E.C. Jose, Homogenization of a parabolic problem with an imperfect interface. Rev. Roum. Math. Pures Appl. 54 (2009) 189-222. | Zbl | MR

[19] S. Monsurrò, Homogenization of a two-component composite with interfacial thermal barrier. Adv. Math. Sci. Appl. 13 (2003) 43-63. | Zbl | MR

[20] S. Monsurrò, Erratum for the paper Homogenization of a two-component composite with interfacial thermal barrier. Adv. Math. Sci. Appl. 14 (2004) 375-377. | Zbl | MR

[21] L. Tartar, Quelques remarques sur l'homogénéisation, in Functional Analysis and Numerical Analysis, Proc. Japan-France Seminar, 1976. Jpn. Soc. Promot. Sci. (1978) 468-482.

Cité par Sources :