A weighted empirical interpolation method: a priori convergence analysis and applications
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 48 (2014) no. 4, pp. 943-953

Voir la notice de l'article provenant de la source Numdam

We extend the classical empirical interpolation method [M. Barrault, Y. Maday, N.C. Nguyen and A.T. Patera, An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations. Compt. Rend. Math. Anal. Num. 339 (2004) 667-672] to a weighted empirical interpolation method in order to approximate nonlinear parametric functions with weighted parameters, e.g. random variables obeying various probability distributions. A priori convergence analysis is provided for the proposed method and the error bound by Kolmogorov N-width is improved from the recent work [Y. Maday, N.C. Nguyen, A.T. Patera and G.S.H. Pau, A general, multipurpose interpolation procedure: the magic points. Commun. Pure Appl. Anal. 8 (2009) 383-404]. We apply our method to geometric Brownian motion, exponential Karhunen-Loève expansion and reduced basis approximation of non-affine stochastic elliptic equations. We demonstrate its improved accuracy and efficiency over the empirical interpolation method, as well as sparse grid stochastic collocation method.

DOI : 10.1051/m2an/2013128
Classification : 65C20, 65D05, 97N50
Keywords: empirical interpolation method, a priori convergence analysis, greedy algorithm, Kolmogorov N-width, geometric brownian motion, Karhunen-Loève expansion, reduced basis method
@article{M2AN_2014__48_4_943_0,
     author = {Chen, Peng and Quarteroni, Alfio and Rozza, Gianluigi},
     title = {A weighted empirical interpolation method: \protect\emph{a priori }convergence analysis and applications},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {943--953},
     publisher = {EDP-Sciences},
     volume = {48},
     number = {4},
     year = {2014},
     doi = {10.1051/m2an/2013128},
     zbl = {1304.65097},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013128/}
}
TY  - JOUR
AU  - Chen, Peng
AU  - Quarteroni, Alfio
AU  - Rozza, Gianluigi
TI  - A weighted empirical interpolation method: a priori convergence analysis and applications
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2014
SP  - 943
EP  - 953
VL  - 48
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013128/
DO  - 10.1051/m2an/2013128
LA  - en
ID  - M2AN_2014__48_4_943_0
ER  - 
%0 Journal Article
%A Chen, Peng
%A Quarteroni, Alfio
%A Rozza, Gianluigi
%T A weighted empirical interpolation method: a priori convergence analysis and applications
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2014
%P 943-953
%V 48
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013128/
%R 10.1051/m2an/2013128
%G en
%F M2AN_2014__48_4_943_0
Chen, Peng; Quarteroni, Alfio; Rozza, Gianluigi. A weighted empirical interpolation method: a priori convergence analysis and applications. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 48 (2014) no. 4, pp. 943-953. doi: 10.1051/m2an/2013128

Cité par Sources :