Numerical analysis of history-dependent quasivariational inequalities with applications in contact mechanics
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 48 (2014) no. 3, pp. 919-942

Voir la notice de l'article provenant de la source Numdam

A new class of history-dependent quasivariational inequalities was recently studied in [M. Sofonea and A. Matei, History-dependent quasivariational inequalities arising in contact mechanics. Eur. J. Appl. Math. 22 (2011) 471-491]. Existence, uniqueness and regularity results were proved and used in the study of several mathematical models which describe the contact between a deformable body and an obstacle. The aim of this paper is to provide numerical analysis of the quasivariational inequalities introduced in the aforementioned paper. To this end we introduce temporally semi-discrete and fully discrete schemes for the numerical approximation of the inequalities, show their unique solvability, and derive error estimates. We then apply these results to a quasistatic frictional contact problem in which the material's behavior is modeled with a viscoelastic constitutive law, the contact is bilateral, and friction is described with a slip-rate version of Coulomb's law. We discuss implementation of the corresponding fully-discrete scheme and present numerical simulation results on a two-dimensional example.

DOI : 10.1051/m2an/2013127
Classification : 65K15, 74D10, 74S05, 74S20
Keywords: quasivariational inequality, numerical analysis, finite element method, error estimates, quasistatic frictional contact problem, viscoelastic constitutive law, Coulomb's law, numerical simulations
@article{M2AN_2014__48_3_919_0,
     author = {Kazmi, Kamran and Barboteu, Mikael and Han, Weimin and Sofonea, Mircea},
     title = {Numerical analysis of history-dependent quasivariational inequalities with applications in contact mechanics},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {919--942},
     publisher = {EDP-Sciences},
     volume = {48},
     number = {3},
     year = {2014},
     doi = {10.1051/m2an/2013127},
     mrnumber = {3264340},
     zbl = {1292.65074},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013127/}
}
TY  - JOUR
AU  - Kazmi, Kamran
AU  - Barboteu, Mikael
AU  - Han, Weimin
AU  - Sofonea, Mircea
TI  - Numerical analysis of history-dependent quasivariational inequalities with applications in contact mechanics
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2014
SP  - 919
EP  - 942
VL  - 48
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013127/
DO  - 10.1051/m2an/2013127
LA  - en
ID  - M2AN_2014__48_3_919_0
ER  - 
%0 Journal Article
%A Kazmi, Kamran
%A Barboteu, Mikael
%A Han, Weimin
%A Sofonea, Mircea
%T Numerical analysis of history-dependent quasivariational inequalities with applications in contact mechanics
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2014
%P 919-942
%V 48
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013127/
%R 10.1051/m2an/2013127
%G en
%F M2AN_2014__48_3_919_0
Kazmi, Kamran; Barboteu, Mikael; Han, Weimin; Sofonea, Mircea. Numerical analysis of history-dependent quasivariational inequalities with applications in contact mechanics. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 48 (2014) no. 3, pp. 919-942. doi: 10.1051/m2an/2013127

Cité par Sources :