Multiscale Finite Element approach for “weakly” random problems and related issues
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 48 (2014) no. 3, pp. 815-858 Cet article a éte moissonné depuis la source Numdam

Voir la notice de l'article

We address multiscale elliptic problems with random coefficients that are a perturbation of multiscale deterministic problems. Our approach consists in taking benefit of the perturbative context to suitably modify the classical Finite Element basis into a deterministic multiscale Finite Element basis. The latter essentially shares the same approximation properties as a multiscale Finite Element basis directly generated on the random problem. The specific reference method that we use is the Multiscale Finite Element Method. Using numerical experiments, we demonstrate the efficiency of our approach and the computational speed-up with respect to a more standard approach. In the stationary setting, we provide a complete analysis of the approach, extending that available for the deterministic periodic setting.

DOI : 10.1051/m2an/2013122
Classification : 35B27, 65M60, 65M12, 35R60, 60H
Keywords: weakly stochastic homogenization, finite elements, Galerkin methods, highly oscillatory PDE
@article{M2AN_2014__48_3_815_0,
     author = {Le Bris, Claude and Legoll, Fr\'ed\'eric and Thomines, Florian},
     title = {Multiscale {Finite} {Element} approach for {\textquotedblleft}weakly{\textquotedblright} random problems and related issues},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {815--858},
     year = {2014},
     publisher = {EDP-Sciences},
     volume = {48},
     number = {3},
     doi = {10.1051/m2an/2013122},
     mrnumber = {3264336},
     zbl = {1300.65007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013122/}
}
TY  - JOUR
AU  - Le Bris, Claude
AU  - Legoll, Frédéric
AU  - Thomines, Florian
TI  - Multiscale Finite Element approach for “weakly” random problems and related issues
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2014
SP  - 815
EP  - 858
VL  - 48
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013122/
DO  - 10.1051/m2an/2013122
LA  - en
ID  - M2AN_2014__48_3_815_0
ER  - 
%0 Journal Article
%A Le Bris, Claude
%A Legoll, Frédéric
%A Thomines, Florian
%T Multiscale Finite Element approach for “weakly” random problems and related issues
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2014
%P 815-858
%V 48
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013122/
%R 10.1051/m2an/2013122
%G en
%F M2AN_2014__48_3_815_0
Le Bris, Claude; Legoll, Frédéric; Thomines, Florian. Multiscale Finite Element approach for “weakly” random problems and related issues. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 48 (2014) no. 3, pp. 815-858. doi: 10.1051/m2an/2013122

Cité par Sources :