Machine Computation Using the Exponentially Convergent Multiscale Spectral Generalized Finite Element Method
ESAIM: Mathematical Modelling and Numerical Analysis , Multiscale problems and techniques. Special Issue, Tome 48 (2014) no. 2, pp. 493-515

Voir la notice de l'article provenant de la source Numdam

A multiscale spectral generalized finite element method (MS-GFEM) is presented for the solution of large two and three dimensional stress analysis problems inside heterogeneous media. It can be employed to solve problems too large to be solved directly with FE techniques and is designed for implementation on massively parallel machines. The method is multiscale in nature and uses an optimal family of spectrally defined local basis functions over a coarse grid. It is proved that the method has an exponential rate of convergence. To fix ideas we describe its implementation for a two dimensional plane strain problem inside a fiber reinforced composite. Here fibers are separated by a minimum distance however no special assumption on the fiber configuration such as periodicity or ergodicity is made. The implementation of MS-GFEM delivers the discrete solution operator using the same order of operations as the number of fibers inside the computational domain. This implementation is optimal in that the number of operations for solution is of the same order as the input data for the problem. The size of the MS-GFEM matrix used to represent the discrete inverse operator is controlled by the scale of the coarse grid and the convergence rate of the spectral basis and can be of order far less than the number of fibers. This strategy is general and can be applied to the solution of very large FE systems associated with the discrete solution of elliptic PDE.

DOI : 10.1051/m2an/2013117
Classification : 65N30, 74S05, 74Q05
Keywords: generalized finite elements, multiscale method, spectral method, heterogeneous media, fiber reinforced composites
@article{M2AN_2014__48_2_493_0,
     author = {Babu\v{s}ka, Ivo and Huang, Xu and Lipton, Robert},
     title = {Machine {Computation} {Using} the {Exponentially} {Convergent} {Multiscale} {Spectral} {Generalized} {Finite} {Element} {Method}},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {493--515},
     publisher = {EDP-Sciences},
     volume = {48},
     number = {2},
     year = {2014},
     doi = {10.1051/m2an/2013117},
     mrnumber = {3177855},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013117/}
}
TY  - JOUR
AU  - Babuška, Ivo
AU  - Huang, Xu
AU  - Lipton, Robert
TI  - Machine Computation Using the Exponentially Convergent Multiscale Spectral Generalized Finite Element Method
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2014
SP  - 493
EP  - 515
VL  - 48
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013117/
DO  - 10.1051/m2an/2013117
LA  - en
ID  - M2AN_2014__48_2_493_0
ER  - 
%0 Journal Article
%A Babuška, Ivo
%A Huang, Xu
%A Lipton, Robert
%T Machine Computation Using the Exponentially Convergent Multiscale Spectral Generalized Finite Element Method
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2014
%P 493-515
%V 48
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013117/
%R 10.1051/m2an/2013117
%G en
%F M2AN_2014__48_2_493_0
Babuška, Ivo; Huang, Xu; Lipton, Robert. Machine Computation Using the Exponentially Convergent Multiscale Spectral Generalized Finite Element Method. ESAIM: Mathematical Modelling and Numerical Analysis , Multiscale problems and techniques. Special Issue, Tome 48 (2014) no. 2, pp. 493-515. doi: 10.1051/m2an/2013117

Cité par Sources :