An optimal quantitative two-scale expansion in stochastic homogenization of discrete elliptic equations
ESAIM: Mathematical Modelling and Numerical Analysis , Multiscale problems and techniques. Special Issue, Tome 48 (2014) no. 2, pp. 325-346

Voir la notice de l'article provenant de la source Numdam

We establish an optimal, linear rate of convergence for the stochastic homogenization of discrete linear elliptic equations. We consider the model problem of independent and identically distributed coefficients on a discretized unit torus. We show that the difference between the solution to the random problem on the discretized torus and the first two terms of the two-scale asymptotic expansion has the same scaling as in the periodic case. In particular the L2-norm in probability of the H1-norm in space of this error scales like ε, where ε is the discretization parameter of the unit torus. The proof makes extensive use of previous results by the authors, and of recent annealed estimates on the Green's function by Marahrens and the third author.

DOI : 10.1051/m2an/2013110
Classification : 35B27, 39A70, 60H25, 60F99
Keywords: stochastic homogenization, homogenization error, quantitative estimate
@article{M2AN_2014__48_2_325_0,
     author = {Gloria, Antoine and Neukamm, Stefan and Otto, Felix},
     title = {An optimal quantitative two-scale expansion in stochastic homogenization of discrete elliptic equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {325--346},
     publisher = {EDP-Sciences},
     volume = {48},
     number = {2},
     year = {2014},
     doi = {10.1051/m2an/2013110},
     mrnumber = {3177848},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013110/}
}
TY  - JOUR
AU  - Gloria, Antoine
AU  - Neukamm, Stefan
AU  - Otto, Felix
TI  - An optimal quantitative two-scale expansion in stochastic homogenization of discrete elliptic equations
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2014
SP  - 325
EP  - 346
VL  - 48
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013110/
DO  - 10.1051/m2an/2013110
LA  - en
ID  - M2AN_2014__48_2_325_0
ER  - 
%0 Journal Article
%A Gloria, Antoine
%A Neukamm, Stefan
%A Otto, Felix
%T An optimal quantitative two-scale expansion in stochastic homogenization of discrete elliptic equations
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2014
%P 325-346
%V 48
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013110/
%R 10.1051/m2an/2013110
%G en
%F M2AN_2014__48_2_325_0
Gloria, Antoine; Neukamm, Stefan; Otto, Felix. An optimal quantitative two-scale expansion in stochastic homogenization of discrete elliptic equations. ESAIM: Mathematical Modelling and Numerical Analysis , Multiscale problems and techniques. Special Issue, Tome 48 (2014) no. 2, pp. 325-346. doi: 10.1051/m2an/2013110

Cité par Sources :