Analysis of Compatible Discrete Operator schemes for elliptic problems on polyhedral meshes
ESAIM: Mathematical Modelling and Numerical Analysis , Multiscale problems and techniques. Special Issue, Tome 48 (2014) no. 2, pp. 553-581

Voir la notice de l'article provenant de la source Numdam

Compatible schemes localize degrees of freedom according to the physical nature of the underlying fields and operate a clear distinction between topological laws and closure relations. For elliptic problems, the cornerstone in the scheme design is the discrete Hodge operator linking gradients to fluxes by means of a dual mesh, while a structure-preserving discretization is employed for the gradient and divergence operators. The discrete Hodge operator is sparse, symmetric positive definite and is assembled cellwise from local operators. We analyze two schemes depending on whether the potential degrees of freedom are attached to the vertices or to the cells of the primal mesh. We derive new functional analysis results on the discrete gradient that are the counterpart of the Sobolev embeddings. Then, we identify the two design properties of the local discrete Hodge operators yielding optimal discrete energy error estimates. Additionally, we show how these operators can be built from local nonconforming gradient reconstructions using a dual barycentric mesh. In this case, we also prove an optimal L2-error estimate for the potential for smooth solutions. Links with existing schemes (finite elements, finite volumes, mimetic finite differences) are discussed. Numerical results are presented on three-dimensional polyhedral meshes.

DOI : 10.1051/m2an/2013104
Classification : 65N12, 65N08, 65N30
Keywords: compatible schemes, mimetic discretization, Hodge operator, error analysis, elliptic problems, polyhedral meshes
@article{M2AN_2014__48_2_553_0,
     author = {Bonelle, J\'er\^ome and Ern, Alexandre},
     title = {Analysis of {Compatible} {Discrete} {Operator} schemes for elliptic problems on polyhedral meshes},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {553--581},
     publisher = {EDP-Sciences},
     volume = {48},
     number = {2},
     year = {2014},
     doi = {10.1051/m2an/2013104},
     mrnumber = {3177857},
     zbl = {1297.65132},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013104/}
}
TY  - JOUR
AU  - Bonelle, Jérôme
AU  - Ern, Alexandre
TI  - Analysis of Compatible Discrete Operator schemes for elliptic problems on polyhedral meshes
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2014
SP  - 553
EP  - 581
VL  - 48
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013104/
DO  - 10.1051/m2an/2013104
LA  - en
ID  - M2AN_2014__48_2_553_0
ER  - 
%0 Journal Article
%A Bonelle, Jérôme
%A Ern, Alexandre
%T Analysis of Compatible Discrete Operator schemes for elliptic problems on polyhedral meshes
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2014
%P 553-581
%V 48
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013104/
%R 10.1051/m2an/2013104
%G en
%F M2AN_2014__48_2_553_0
Bonelle, Jérôme; Ern, Alexandre. Analysis of Compatible Discrete Operator schemes for elliptic problems on polyhedral meshes. ESAIM: Mathematical Modelling and Numerical Analysis , Multiscale problems and techniques. Special Issue, Tome 48 (2014) no. 2, pp. 553-581. doi: 10.1051/m2an/2013104

Cité par Sources :