Voir la notice de l'article provenant de la source Numdam
The central objective of this paper is to develop reduced basis methods for parameter dependent transport dominated problems that are rigorously proven to exhibit rate-optimal performance when compared with the Kolmogorov n-widths of the solution sets. The central ingredient is the construction of computationally feasible “tight” surrogates which in turn are based on deriving a suitable well-conditioned variational formulation for the parameter dependent problem. The theoretical results are illustrated by numerical experiments for convection-diffusion and pure transport equations. In particular, the latter example sheds some light on the smoothness of the dependence of the solutions on the parameters.
@article{M2AN_2014__48_3_623_0, author = {Dahmen, Wolfgang and Plesken, Christian and Welper, Gerrit}, title = {Double greedy algorithms: {Reduced} basis methods for transport dominated problems}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {623--663}, publisher = {EDP-Sciences}, volume = {48}, number = {3}, year = {2014}, doi = {10.1051/m2an/2013103}, mrnumber = {3177860}, zbl = {1291.65339}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013103/} }
TY - JOUR AU - Dahmen, Wolfgang AU - Plesken, Christian AU - Welper, Gerrit TI - Double greedy algorithms: Reduced basis methods for transport dominated problems JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2014 SP - 623 EP - 663 VL - 48 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013103/ DO - 10.1051/m2an/2013103 LA - en ID - M2AN_2014__48_3_623_0 ER -
%0 Journal Article %A Dahmen, Wolfgang %A Plesken, Christian %A Welper, Gerrit %T Double greedy algorithms: Reduced basis methods for transport dominated problems %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2014 %P 623-663 %V 48 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013103/ %R 10.1051/m2an/2013103 %G en %F M2AN_2014__48_3_623_0
Dahmen, Wolfgang; Plesken, Christian; Welper, Gerrit. Double greedy algorithms: Reduced basis methods for transport dominated problems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 48 (2014) no. 3, pp. 623-663. doi : 10.1051/m2an/2013103. http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013103/
[1] Convergence Rates for Greedy Algorithms in Reduced Basis Methods. SIAM J. Math. Anal. 43 (2011) 1457-1472. | Zbl | MR
, , , , and ,[2] Mixed and Hybrid Finite Element Methods, in vol. 15 of Springer Ser. Comput. Math. Springer-Verlag (1991). | Zbl | MR
and ,[3] A Priori convergence of the greedy algorithm for the parameterized reduced basis. ESAIM: M2AN 46 (2012) 595-603. | Zbl | MR | mathdoc-id
, , , and ,[4] Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal. 46 (2008) 2524-2550. | Zbl | MR
, , and ,[5] Adaptivity and Variational Stabilization for Convection-Diffusion Equations. ESAIM: M2AN 46 (2012) 1247-1273. | Zbl | MR | mathdoc-id
, and ,[6] Parameter dependent transport equations, in Workshop J.L.L.-SMP: Reduced Basis Methods in High Dimensions. Available at http://www.ljll.math.upmc.fr/fr/archives/actualites/2011/workshop˙ljll˙smp˙rbihd.html
,[7] Adaptive Petrov−Galerkin methods for first order transport equations. SIAM J. Numer. Anal. 50 (2012) 2420-2445. | Zbl | MR
, , and ,[8] A class of discontinuous Petrov−Galerkin Methods I: The transport equation. Comput. Methods Appl. Mech. Engrg. 199 (2010) 1558-1572. | Zbl | MR
and ,[9] A class of discontinuous Petrov−Galerkin methods. Part II: Optimal test functions. Numer. Methods for Partial Differ. Equ. 27 (2011) 70-105. | Zbl | MR
and ,[10] Reduced basis error bound computation of parameter-dependent Navier-Stokes equations by the natural norm approach. SIAM J. Numer. Anal. 46 (2008) 2039-2067. | Zbl | MR
,[11] Greedy algorithms for reduced bases in Banach spaces, Constructive Approximation 37 (2013) 455-466. | Zbl | MR
, and ,[12] Theory and practice of finite elements. Springer (2004). | Zbl | MR
and ,[13] Certified reduced basis methods for parametrized saddle point problems, preprint (2012). To appear in SIAM J. Sci. Comput. | Zbl | MR
and ,[14] Reduced basis a posteriori error bounds for the Stokes equations in parameterized domains: A penalty approach. M3AS: Math. Models Methods Appl. Sci. 21 (2011) 2103-2134. | MR
and ,[15] Certified Reduced Basis Methods for Nonaffine Linear Time-Varying and Nonlinear Parabolic Partial Differential Equations. M3AS: Math. Models Methods Appl. Sci. 22 (2012) 40. | Zbl | MR
,[16] A Posteriori Error Bounds for Reduced-Basis Approximations of Parametrized Parabolic Partial Differential Equations. ESAIM: M2AN 39 (2005) 157-181. | mathdoc-id | Zbl | MR | EuDML
and ,[17] Convergence rates for the POD-greedy method. ESAIM: M2AN 47 (2013) 859-873. | mathdoc-id | Zbl | MR | EuDML
,[18] Variational Multiscale Analysis: the Fine-scale Green's Function, Projection, Optimization, Localization, and Stabilized Methods. SIAM J. Numer. Anal. 45 (2007) 539-557. | Zbl | MR
and ,[19] Numerical methods in multidimensional radiative transfer, Springer (2009). | Zbl | MR
, , and ,[20] Constructive approximation: Advanced problems, vol. 304. Springer Grundlehren, Berlin (1996). | Zbl | MR
, and ,[21] A priori convergence theory for reduced-basis approximations of single-parametric elliptic partial differential equations. J. Sci. Comput. 17 (2002) 437-446. | Zbl | MR
, and ,[22] First-order system ℒℒ∗ (FOSLL)∗ for general scalar elliptic problems in the plane. SIAM J. Numer. Anal. 43 (2005) 2098-2120. | Zbl | MR
, , and ,[23] Reduced basis approximation for the time-dependent viscous Burgers' equation. Calcolo 46 (2009) 157-185. | Zbl | MR
, and ,[24] An improved error bound for reduced basis approximation of linear parabolic problems, submitted to Mathematics of Computation (in press 2013).
and ,[25] Reduced Basis Approximation and a Posteriori Error Estimation for Parametrized Partial Differential Equations, Version 1.0, Copyright MIT 2006-2007, to appear in (tentative rubric) MIT Pappalardo Graduate Monographs in Mechanical Engineering.
and ,[26] Robust Numerical Methods for Singularly Perturbed Differential Equations, in vol. 24 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 2nd Edition (2008). | Zbl | MR
, and ,[27] G. Rozza and D.B.P. Huynh and A. Manzoni, Reduced basis approximation and a posteriori error estiamtion for Stokes flows in parametrized geometries: roles of the inf-sup stability constants, Numer. Math. DOI: 10.1007/s00211-013-0534-8. | MR
[28] Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch. Comput. Methods Eng. 15 (2008) 229-275. | MR
, and ,[29] On the stability of reduced basis techniques for Stokes equations in parametrized domains. Comput. Methods Appl. Mechanics Engrg. 196 (2007) 1244-1260. | Zbl | MR
and ,[30] A uniform analysis of non-symmetric and coercive linear operators. SIAM J. Math. Anal. 36 (2005) 2033-2048. | Zbl | MR
,[31] On Forward and Inverse Models in Optical Tomography, Ph.D. Thesis. RWTH Aachen (2011).
,[32] Natural norm a posteriori error estimators for reduced basis approximations. J. Comput. Phys. 217 (2006) 37-62. | Zbl | MR
, , , , and ,[33] Robust a posteriori error estimates for stationary convection-diffusion equations. SIAM J. Numer. Anal. 43 (2005) 1766-1782. | Zbl | MR
,[34] Infinite dimensional stabilization of convection-dominated problems, Ph.D. Thesis. RWTH Aachen (2012).
,[35] A class of discontinuous Petrov−Galerkin methods. Part IV: Wave propagation. J. Comput. Phys. 230 (2011) 2406-2432. | MR
, , , , and ,Cité par Sources :