Voir la notice de l'article provenant de la source Numdam
Inspired by the growing use of non linear discretization techniques for the linear diffusion equation in industrial codes, we construct and analyze various explicit non linear finite volume schemes for the heat equation in dimension one. These schemes are inspired by the Le Potier's trick [C. R. Acad. Sci. Paris, Ser. I 348 (2010) 691-695]. They preserve the maximum principle and admit a finite volume formulation. We provide a original functional setting for the analysis of convergence of such methods. In particular we show that the fourth discrete derivative is bounded in quadratic norm. Finally we construct, analyze and test a new explicit non linear maximum preserving scheme with third order convergence: it is optimal on numerical tests.
@article{M2AN_2014__48_1_107_0, author = {Despr\'es, Bruno}, title = {Non linear schemes for the heat equation in {1D}}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {107--134}, publisher = {EDP-Sciences}, volume = {48}, number = {1}, year = {2014}, doi = {10.1051/m2an/2013096}, mrnumber = {3177839}, zbl = {1292.65098}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013096/} }
TY - JOUR AU - Després, Bruno TI - Non linear schemes for the heat equation in 1D JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2014 SP - 107 EP - 134 VL - 48 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013096/ DO - 10.1051/m2an/2013096 LA - en ID - M2AN_2014__48_1_107_0 ER -
%0 Journal Article %A Després, Bruno %T Non linear schemes for the heat equation in 1D %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2014 %P 107-134 %V 48 %N 1 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013096/ %R 10.1051/m2an/2013096 %G en %F M2AN_2014__48_1_107_0
Després, Bruno. Non linear schemes for the heat equation in 1D. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 48 (2014) no. 1, pp. 107-134. doi: 10.1051/m2an/2013096
Cité par Sources :