Stabilized Galerkin methods for magnetic advection
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 47 (2013) no. 6, pp. 1713-1732
Voir la notice de l'article provenant de la source Numdam
Taking the cue from stabilized Galerkin methods for scalar advection problems, we adapt the technique to boundary value problems modeling the advection of magnetic fields. We provide rigorous a priori error estimates for both fully discontinuous piecewise polynomial trial functions and -conforming finite elements.
DOI :
10.1051/m2an/2013085
Classification :
65M60, 65M12
Keywords: magnetic advection, lie derivative, Friedrichs system, stabilized Galerkin method, upwinding, edge elements
Keywords: magnetic advection, lie derivative, Friedrichs system, stabilized Galerkin method, upwinding, edge elements
@article{M2AN_2013__47_6_1713_0,
author = {Heumann, Holger and Hiptmair, Ralf},
title = {Stabilized {Galerkin} methods for magnetic advection},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {1713--1732},
publisher = {EDP-Sciences},
volume = {47},
number = {6},
year = {2013},
doi = {10.1051/m2an/2013085},
mrnumber = {3123373},
zbl = {1293.76088},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013085/}
}
TY - JOUR AU - Heumann, Holger AU - Hiptmair, Ralf TI - Stabilized Galerkin methods for magnetic advection JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2013 SP - 1713 EP - 1732 VL - 47 IS - 6 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013085/ DO - 10.1051/m2an/2013085 LA - en ID - M2AN_2013__47_6_1713_0 ER -
%0 Journal Article %A Heumann, Holger %A Hiptmair, Ralf %T Stabilized Galerkin methods for magnetic advection %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2013 %P 1713-1732 %V 47 %N 6 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013085/ %R 10.1051/m2an/2013085 %G en %F M2AN_2013__47_6_1713_0
Heumann, Holger; Hiptmair, Ralf. Stabilized Galerkin methods for magnetic advection. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 47 (2013) no. 6, pp. 1713-1732. doi: 10.1051/m2an/2013085
Cité par Sources :
