Lagrangian approach to deriving energy-preserving numerical schemes for the Euler-Lagrange partial differential equations
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 47 (2013) no. 5, pp. 1493-1513

Voir la notice de l'article provenant de la source Numdam

We propose a Lagrangian approach to deriving energy-preserving finite difference schemes for the Euler-Lagrange partial differential equations. Noether's theorem states that the symmetry of time translation of Lagrangians yields the energy conservation law. We introduce a unique viewpoint on this theorem: “the symmetry of time translation of Lagrangians derives the Euler-Lagrange equation and the energy conservation law, simultaneously.” The proposed method is a combination of a discrete counter part of this statement and the discrete gradient method. It is also shown that the symmetry of space translation derives momentum-preserving schemes. Finally, we discuss the existence of discrete local conservation laws.

DOI : 10.1051/m2an/2013080
Classification : 65M06, 65N06, 65P10
Keywords: discrete gradient method, energy-preserving integrator, finite difference method, lagrangian mechanics
@article{M2AN_2013__47_5_1493_0,
     author = {Yaguchi, Takaharu},
     title = {Lagrangian approach to deriving energy-preserving numerical schemes for the {Euler-Lagrange} partial differential equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1493--1513},
     publisher = {EDP-Sciences},
     volume = {47},
     number = {5},
     year = {2013},
     doi = {10.1051/m2an/2013080},
     mrnumber = {3100772},
     zbl = {1284.65109},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013080/}
}
TY  - JOUR
AU  - Yaguchi, Takaharu
TI  - Lagrangian approach to deriving energy-preserving numerical schemes for the Euler-Lagrange partial differential equations
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2013
SP  - 1493
EP  - 1513
VL  - 47
IS  - 5
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013080/
DO  - 10.1051/m2an/2013080
LA  - en
ID  - M2AN_2013__47_5_1493_0
ER  - 
%0 Journal Article
%A Yaguchi, Takaharu
%T Lagrangian approach to deriving energy-preserving numerical schemes for the Euler-Lagrange partial differential equations
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2013
%P 1493-1513
%V 47
%N 5
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013080/
%R 10.1051/m2an/2013080
%G en
%F M2AN_2013__47_5_1493_0
Yaguchi, Takaharu. Lagrangian approach to deriving energy-preserving numerical schemes for the Euler-Lagrange partial differential equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 47 (2013) no. 5, pp. 1493-1513. doi: 10.1051/m2an/2013080

Cité par Sources :