High order approximation of probabilistic shock profiles in hyperbolic conservation laws with uncertain initial data
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 47 (2013) no. 3, pp. 807-835

Voir la notice de l'article provenant de la source Numdam

We analyze the regularity of random entropy solutions to scalar hyperbolic conservation laws with random initial data. We prove regularity theorems for statistics of random entropy solutions like expectation, variance, space-time correlation functions and polynomial moments such as gPC coefficients. We show how regularity of such moments (statistical and polynomial chaos) of random entropy solutions depends on the regularity of the distribution law of the random shock location of the initial data. Sufficient conditions on the law of the initial data for moments of the random entropy solution to be piece-wise smooth functions of space and time are identified, even in cases where path-wise random entropy solutions are discontinuous almost surely. We extrapolate the results to hyperbolic systems of conservation laws in one space dimension. We then exhibit a class of stochastic Galerkin discretizations which allows to derive closed deterministic systems of hyperbolic conservation laws for the coefficients in truncated polynomial chaos expansions of the random entropy solution. Based on the regularity theory developed here, we show that depending on the smoothness of the law of the initial data, arbitrarily high convergence rates are possible for the computation of coefficients in gPC approximations of random entropy solutions for Riemann problems with random shock location by combined Stochastic Galerkin Finite Volume schemes.

DOI : 10.1051/m2an/2012060
Classification : 65C30, 65M08, 65M12, 65M70, 65M75
Keywords: uncertainty quantification, hyperbolic conservation laws, probabilistic shock profile, stochastic Galerkin finite volume schemes
@article{M2AN_2013__47_3_807_0,
     author = {Schwab, Christoph and Tokareva, Svetlana},
     title = {High order approximation of probabilistic shock profiles in hyperbolic conservation laws with uncertain initial data},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {807--835},
     publisher = {EDP-Sciences},
     volume = {47},
     number = {3},
     year = {2013},
     doi = {10.1051/m2an/2012060},
     mrnumber = {3056410},
     zbl = {1266.65008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2012060/}
}
TY  - JOUR
AU  - Schwab, Christoph
AU  - Tokareva, Svetlana
TI  - High order approximation of probabilistic shock profiles in hyperbolic conservation laws with uncertain initial data
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2013
SP  - 807
EP  - 835
VL  - 47
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2012060/
DO  - 10.1051/m2an/2012060
LA  - en
ID  - M2AN_2013__47_3_807_0
ER  - 
%0 Journal Article
%A Schwab, Christoph
%A Tokareva, Svetlana
%T High order approximation of probabilistic shock profiles in hyperbolic conservation laws with uncertain initial data
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2013
%P 807-835
%V 47
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2012060/
%R 10.1051/m2an/2012060
%G en
%F M2AN_2013__47_3_807_0
Schwab, Christoph; Tokareva, Svetlana. High order approximation of probabilistic shock profiles in hyperbolic conservation laws with uncertain initial data. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 47 (2013) no. 3, pp. 807-835. doi: 10.1051/m2an/2012060

Cité par Sources :