Uncertainty quantification for data assimilation in a steady incompressible Navier-Stokes problem
ESAIM: Mathematical Modelling and Numerical Analysis , Direct and inverse modeling of the cardiovascular and respiratory systems. Numéro spécial, Tome 47 (2013) no. 4, pp. 1037-1057

Voir la notice de l'article provenant de la source Numdam

The reliable and effective assimilation of measurements and numerical simulations in engineering applications involving computational fluid dynamics is an emerging problem as soon as new devices provide more data. In this paper we are mainly driven by hemodynamics applications, a field where the progressive increment of measures and numerical tools makes this problem particularly up-to-date. We adopt a Bayesian approach to the inclusion of noisy data in the incompressible steady Navier-Stokes equations (NSE). The purpose is the quantification of uncertainty affecting velocity and flow related variables of interest, all treated as random variables. The method consists in the solution of an optimization problem where the misfit between data and velocity - in a convenient norm - is minimized under the constraint of the NSE. We derive classical point estimators, namely the maximum a posteriori - MAP - and the maximum likelihood - ML - ones. In addition, we obtain confidence regions for velocity and wall shear stress, a flow related variable of medical relevance. Numerical simulations in 2-dimensional and axisymmetric 3-dimensional domains show the gain yielded by the introduction of a complete statistical knowledge in the assimilation process.

DOI : 10.1051/m2an/2012056
Classification : 76D06, 76M10, 62F15, 60H30
Keywords: computational fluid dynamics, optimization, uncertainty quantification, statistical inverse problems, data assimilation, hemodynamics
@article{M2AN_2013__47_4_1037_0,
     author = {D{\textquoteright}Elia, Marta and Veneziani, Alessandro},
     title = {Uncertainty quantification for data assimilation in a steady incompressible {Navier-Stokes} problem},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1037--1057},
     publisher = {EDP-Sciences},
     volume = {47},
     number = {4},
     year = {2013},
     doi = {10.1051/m2an/2012056},
     mrnumber = {3082288},
     zbl = {1271.76062},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2012056/}
}
TY  - JOUR
AU  - D’Elia, Marta
AU  - Veneziani, Alessandro
TI  - Uncertainty quantification for data assimilation in a steady incompressible Navier-Stokes problem
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2013
SP  - 1037
EP  - 1057
VL  - 47
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2012056/
DO  - 10.1051/m2an/2012056
LA  - en
ID  - M2AN_2013__47_4_1037_0
ER  - 
%0 Journal Article
%A D’Elia, Marta
%A Veneziani, Alessandro
%T Uncertainty quantification for data assimilation in a steady incompressible Navier-Stokes problem
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2013
%P 1037-1057
%V 47
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2012056/
%R 10.1051/m2an/2012056
%G en
%F M2AN_2013__47_4_1037_0
D’Elia, Marta; Veneziani, Alessandro. Uncertainty quantification for data assimilation in a steady incompressible Navier-Stokes problem. ESAIM: Mathematical Modelling and Numerical Analysis , Direct and inverse modeling of the cardiovascular and respiratory systems. Numéro spécial, Tome 47 (2013) no. 4, pp. 1037-1057. doi: 10.1051/m2an/2012056

Cité par Sources :