Voir la notice de l'article provenant de la source Numdam
A mixed finite element method for the Navier-Stokes equations is introduced in which the stress is a primary variable. The variational formulation retains the mathematical structure of the Navier-Stokes equations and the classical theory extends naturally to this setting. Finite element spaces satisfying the associated inf-sup conditions are developed.
@article{M2AN_2013__47_3_789_0, author = {Howell, Jason S. and Walkington, Noel J.}, title = {Dual-mixed finite element methods for the {Navier-Stokes} equations}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {789--805}, publisher = {EDP-Sciences}, volume = {47}, number = {3}, year = {2013}, doi = {10.1051/m2an/2012050}, mrnumber = {3056409}, zbl = {1266.76029}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2012050/} }
TY - JOUR AU - Howell, Jason S. AU - Walkington, Noel J. TI - Dual-mixed finite element methods for the Navier-Stokes equations JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2013 SP - 789 EP - 805 VL - 47 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2012050/ DO - 10.1051/m2an/2012050 LA - en ID - M2AN_2013__47_3_789_0 ER -
%0 Journal Article %A Howell, Jason S. %A Walkington, Noel J. %T Dual-mixed finite element methods for the Navier-Stokes equations %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2013 %P 789-805 %V 47 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2012050/ %R 10.1051/m2an/2012050 %G en %F M2AN_2013__47_3_789_0
Howell, Jason S.; Walkington, Noel J. Dual-mixed finite element methods for the Navier-Stokes equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 47 (2013) no. 3, pp. 789-805. doi: 10.1051/m2an/2012050
Cité par Sources :