Sparse adaptive Taylor approximation algorithms for parametric and stochastic elliptic PDEs
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 47 (2013) no. 1, pp. 253-280

Voir la notice de l'article provenant de la source Numdam

The numerical approximation of parametric partial differential equations is a computational challenge, in particular when the number of involved parameter is large. This paper considers a model class of second order, linear, parametric, elliptic PDEs on a bounded domain D with diffusion coefficients depending on the parameters in an affine manner. For such models, it was shown in [9, 10] that under very weak assumptions on the diffusion coefficients, the entire family of solutions to such equations can be simultaneously approximated in the Hilbert space V = H01(D) by multivariate sparse polynomials in the parameter vector y with a controlled number N of terms. The convergence rate in terms of N does not depend on the number of parameters in V, which may be arbitrarily large or countably infinite, thereby breaking the curse of dimensionality. However, these approximation results do not describe the concrete construction of these polynomial expansions, and should therefore rather be viewed as benchmark for the convergence analysis of numerical methods. The present paper presents an adaptive numerical algorithm for constructing a sequence of sparse polynomials that is proved to converge toward the solution with the optimal benchmark rate. Numerical experiments are presented in large parameter dimension, which confirm the effectiveness of the adaptive approach.

DOI : 10.1051/m2an/2012027
Classification : 65N35, 65L10, 35J25
Keywords: parametric and stochastic PDE's, sparse polynomial approximation, high dimensional problems, adaptive algorithms
@article{M2AN_2013__47_1_253_0,
     author = {Chkifa, Abdellah and Cohen, Albert and DeVore, Ronald and Schwab, Christoph},
     title = {Sparse adaptive {Taylor} approximation algorithms for parametric and stochastic elliptic {PDEs}},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {253--280},
     publisher = {EDP-Sciences},
     volume = {47},
     number = {1},
     year = {2013},
     doi = {10.1051/m2an/2012027},
     zbl = {1273.65009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2012027/}
}
TY  - JOUR
AU  - Chkifa, Abdellah
AU  - Cohen, Albert
AU  - DeVore, Ronald
AU  - Schwab, Christoph
TI  - Sparse adaptive Taylor approximation algorithms for parametric and stochastic elliptic PDEs
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2013
SP  - 253
EP  - 280
VL  - 47
IS  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2012027/
DO  - 10.1051/m2an/2012027
LA  - en
ID  - M2AN_2013__47_1_253_0
ER  - 
%0 Journal Article
%A Chkifa, Abdellah
%A Cohen, Albert
%A DeVore, Ronald
%A Schwab, Christoph
%T Sparse adaptive Taylor approximation algorithms for parametric and stochastic elliptic PDEs
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2013
%P 253-280
%V 47
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2012027/
%R 10.1051/m2an/2012027
%G en
%F M2AN_2013__47_1_253_0
Chkifa, Abdellah; Cohen, Albert; DeVore, Ronald; Schwab, Christoph. Sparse adaptive Taylor approximation algorithms for parametric and stochastic elliptic PDEs. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 47 (2013) no. 1, pp. 253-280. doi: 10.1051/m2an/2012027

Cité par Sources :