Voir la notice de l'article provenant de la source Numdam
In this paper we analyze the consistency, the accuracy and some entropy properties of particle methods with remeshing in the case of a scalar one-dimensional conservation law. As in [G.-H. Cottet and L. Weynans, C. R. Acad. Sci. Paris, Ser. I 343 (2006) 51-56] we re-write particle methods with remeshing in the finite-difference formalism. This allows us to prove the consistency of these methods, and accuracy properties related to the accuracy of interpolation kernels. Cottet and Magni devised recently in [G.-H. Cottet and A. Magni, C. R. Acad. Sci. Paris, Ser. I 347 (2009) 1367-1372] and [A. Magni and G.-H. Cottet, J. Comput. Phys. 231 (2012) 152-172] TVD remeshing schemes for particle methods. We extend these results to the nonlinear case with arbitrary velocity sign. We present numerical results obtained with these new TVD particle methods for the Euler equations in the case of the Sod shock tube. Then we prove that with these new TVD remeshing schemes the particle methods converge toward the entropy solution of the scalar conservation law.
@article{M2AN_2013__47_1_57_0, author = {Weynans, Lisl and Magni, Adrien}, title = {Consistency, accuracy and entropy behaviour of remeshed particle methods}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {57--81}, publisher = {EDP-Sciences}, volume = {47}, number = {1}, year = {2013}, doi = {10.1051/m2an/2012019}, mrnumber = {2968695}, zbl = {1278.65136}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2012019/} }
TY - JOUR AU - Weynans, Lisl AU - Magni, Adrien TI - Consistency, accuracy and entropy behaviour of remeshed particle methods JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2013 SP - 57 EP - 81 VL - 47 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2012019/ DO - 10.1051/m2an/2012019 LA - en ID - M2AN_2013__47_1_57_0 ER -
%0 Journal Article %A Weynans, Lisl %A Magni, Adrien %T Consistency, accuracy and entropy behaviour of remeshed particle methods %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2013 %P 57-81 %V 47 %N 1 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2012019/ %R 10.1051/m2an/2012019 %G en %F M2AN_2013__47_1_57_0
Weynans, Lisl; Magni, Adrien. Consistency, accuracy and entropy behaviour of remeshed particle methods. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 47 (2013) no. 1, pp. 57-81. doi : 10.1051/m2an/2012019. http://geodesic.mathdoc.fr/articles/10.1051/m2an/2012019/
[1] Convergence of SPH methods for scalar nonlinear conservation laws. SIAM J. Numer. Anal. 37 (2000) 863-887. | Zbl | MR
and ,[2] The Numerical Modelling of Nonlinear Stellar Pulsations, Problems and Prospects, a review, in Smooth Particle Hydrodynamics : NATO ASIS Series (1989) 269-287.
,[3] Contribution à l'analyse numérique des équations de Navier-Stokes compressibles à deux entropies spécifiques. Application à la turbulence compressible. Ph.D. thesis, Université Paris VI (1998).
,[4] A vortex level set method for the two-way coupling of an incompressible fluid with colliding rigid bodies. J. Comput. Phys. 227 (2008) 9121-9137. | Zbl | MR
and ,[5] Vortex methods. Cambridge University Press (2000). | Zbl | MR
and ,[6] TVD remeshing schemes for particle methods. C. R. Acad. Sci. Paris, Ser. I 347 (2009) 1367-1372. | Zbl | MR
and ,[7] Particle methods revisited : a class of high-order finite-difference schemes. C. R. Acad. Sci. Paris, Ser. I 343 (2006) 51-56. | Zbl | MR
and ,[8] A comparison of spectral and vortex methods in three-dimensional incompressible flow. J. Comput. Phys. 175 (2002) 702-712. | Zbl
, , and ,[9] The particle-in-cell method for hydrodynamics calculations. Technical Report, Los Alamos Scientific Laboratory (1956).
and ,[10] Modified interpolation kernels for treating diffusion and remeshing in vortex methods. J. Comput. Phys. 213 (2006) 239-263. | Zbl | MR
and ,[11] Smoothed particle hydrodynamics : theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181 (1977) 375-389. | Zbl
and ,[12] Hydrodynamic problems involving large fluid distorsion. J. Assoc. Comput. Mach. 4 (1957) 137-142.
,[13] High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49 (1983) 357-393. | Zbl | MR
,[14] Why non-conservative schemes converge to wrong solutions : error analysis. Math. Comput. 62 (1994) 497-530. | Zbl | MR
and ,[15] A Lagrangian particle level set method. J. Comput. Phys. 210 (2005) 342-367. | Zbl | MR
and .[16] High resolution simulations of the flow around an impulsively started cylinder using vortex methods. J. Fluid Mech. 296 (1995) 1-38. | Zbl
and ,[17] Convergence des méthodes particulaires renormalisées pour les systèmes de Friedrichs. C. R. Acad. Sci. Paris, Ser. I 349 (2005) 465-470. | Zbl | MR
and ,[18] Renormalized meshfree schemes II : convergence for scalar conservation laws. SIAM J. Numer. Anal. 46 (2008) 1935-1964. | Zbl | MR
and ,[19] Finite-volume methods for hyperbolic problems. Cambridge University Press (2002). | Zbl | MR
,[20] Méthodes particulaires avec remaillage : analyse numérique nouveaux schémas et applications pour la simulation d'équations de transport. Ph.D. thesis, Université de Grenoble. Available on : http://tel.archives-ouvertes.fr/ tel-00623128/fr/ (2011).
,[21] Accurate, non-oscillatory, remeshing schemes for particle methods. J. Comput. Phys. 231 (2012) 152-172. | MR
and ,[22] Numerical viscosity and the entropy condition. Commun. Pure Appl. Math. 32 (1979) 797-838. | Zbl | MR
and ,[23] Why particle methods work. SIAM J. Sci. Stat. Comput 3 (1982) 422-433. | Zbl | MR
,[24] Extrapolating B-splines for interpolation. J. Comput. Phys. 60 (1985) 253-262. | Zbl | MR
,[25] Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys. 30 (1992) 543-574. | Zbl
,[26] Vortex methods for direct numerical simulation of three-dimensional bluff body flows : application to the sphere at Re = 300, 500, and 1000. J. Comput. Phys. 178 (2002) 427-463. | Zbl | MR
, , , and ,[27] Topological aspects of the three-dimensional wake behind rotary oscillating circular cylinder. J. Fluid Mech. 517 (2004) 27-53. | Zbl | MR
,[28] A survey of several finite-difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27 (1978) 1-131. | Zbl | MR
,[29] Méthode particulaire multi-niveaux pour la dynamique des gaz, application au calcul d'écoulements multifluides. Ph.D. thesis, Université Joseph Fourier. Available on : http://tel.archives-ouvertes.fr/tel-00121346/en/ (2006).
,Cité par Sources :