Voir la notice de l'article provenant de la source Numdam
This work is concerned with a class of minimum effort problems for partial differential equations, where the control cost is of L∞-type. Since this problem is non-differentiable, a regularized functional is introduced that can be minimized by a superlinearly convergent semi-smooth Newton method. Uniqueness and convergence for the solutions to the regularized problem are addressed, and a continuation strategy based on a model function is proposed. Numerical examples for a convection-diffusion equation illustrate the behavior of minimum effort controls.
@article{M2AN_2012__46_4_911_0, author = {Clason, Christian and Ito, Kazufumi and Kunisch, Karl}, title = {A minimum effort optimal control problem for elliptic {PDEs}}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {911--927}, publisher = {EDP-Sciences}, volume = {46}, number = {4}, year = {2012}, doi = {10.1051/m2an/2011074}, mrnumber = {2891474}, zbl = {1270.49023}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2011074/} }
TY - JOUR AU - Clason, Christian AU - Ito, Kazufumi AU - Kunisch, Karl TI - A minimum effort optimal control problem for elliptic PDEs JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2012 SP - 911 EP - 927 VL - 46 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2011074/ DO - 10.1051/m2an/2011074 LA - en ID - M2AN_2012__46_4_911_0 ER -
%0 Journal Article %A Clason, Christian %A Ito, Kazufumi %A Kunisch, Karl %T A minimum effort optimal control problem for elliptic PDEs %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2012 %P 911-927 %V 46 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2011074/ %R 10.1051/m2an/2011074 %G en %F M2AN_2012__46_4_911_0
Clason, Christian; Ito, Kazufumi; Kunisch, Karl. A minimum effort optimal control problem for elliptic PDEs. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 46 (2012) no. 4, pp. 911-927. doi: 10.1051/m2an/2011074
Cité par Sources :