Robust domain decomposition preconditioners for abstract symmetric positive definite bilinear forms
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 46 (2012) no. 5, pp. 1175-1199

Voir la notice de l'article provenant de la source Numdam

An abstract framework for constructing stable decompositions of the spaces corresponding to general symmetric positive definite problems into “local” subspaces and a global “coarse” space is developed. Particular applications of this abstract framework include practically important problems in porous media applications such as: the scalar elliptic (pressure) equation and the stream function formulation of its mixed form, Stokes' and Brinkman's equations. The constant in the corresponding abstract energy estimate is shown to be robust with respect to mesh parameters as well as the contrast, which is defined as the ratio of high and low values of the conductivity (or permeability). The derived stable decomposition allows to construct additive overlapping Schwarz iterative methods with condition numbers uniformly bounded with respect to the contrast and mesh parameters. The coarse spaces are obtained by patching together the eigenfunctions corresponding to the smallest eigenvalues of certain local problems. A detailed analysis of the abstract setting is provided. The proposed decomposition builds on a method of Galvis and Efendiev [Multiscale Model. Simul. 8 (2010) 1461-1483] developed for second order scalar elliptic problems with high contrast. Applications to the finite element discretizations of the second order elliptic problem in Galerkin and mixed formulation, the Stokes equations, and Brinkman's problem are presented. A number of numerical experiments for these problems in two spatial dimensions are provided.

DOI : 10.1051/m2an/2011073
Classification : 65F10, 65N20, 65N22, 65N30, 65N55
Keywords: domain decomposition, robust additive Schwarz preconditioner, spectral coarse spaces, high contrast, Brinkman's problem, multiscale problems
@article{M2AN_2012__46_5_1175_0,
     author = {Efendiev, Yalchin and Galvis, Juan and Lazarov, Raytcho and Willems, Joerg},
     title = {Robust domain decomposition preconditioners for abstract symmetric positive definite bilinear forms},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1175--1199},
     publisher = {EDP-Sciences},
     volume = {46},
     number = {5},
     year = {2012},
     doi = {10.1051/m2an/2011073},
     mrnumber = {2916377},
     zbl = {1272.65098},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2011073/}
}
TY  - JOUR
AU  - Efendiev, Yalchin
AU  - Galvis, Juan
AU  - Lazarov, Raytcho
AU  - Willems, Joerg
TI  - Robust domain decomposition preconditioners for abstract symmetric positive definite bilinear forms
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2012
SP  - 1175
EP  - 1199
VL  - 46
IS  - 5
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2011073/
DO  - 10.1051/m2an/2011073
LA  - en
ID  - M2AN_2012__46_5_1175_0
ER  - 
%0 Journal Article
%A Efendiev, Yalchin
%A Galvis, Juan
%A Lazarov, Raytcho
%A Willems, Joerg
%T Robust domain decomposition preconditioners for abstract symmetric positive definite bilinear forms
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2012
%P 1175-1199
%V 46
%N 5
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2011073/
%R 10.1051/m2an/2011073
%G en
%F M2AN_2012__46_5_1175_0
Efendiev, Yalchin; Galvis, Juan; Lazarov, Raytcho; Willems, Joerg. Robust domain decomposition preconditioners for abstract symmetric positive definite bilinear forms. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 46 (2012) no. 5, pp. 1175-1199. doi: 10.1051/m2an/2011073

Cité par Sources :