Voir la notice de l'article provenant de la source Numdam
We consider a nonlinear Dirac system in one space dimension with periodic boundary conditions. First, we discuss questions on the existence and uniqueness of the solution. Then, we propose an implicit-explicit finite difference method for its approximation, proving optimal order a priori error estimates in various discrete norms and showing results from numerical experiments.
@article{M2AN_2012__46_4_841_0, author = {Bournaveas, Nikolaos and Zouraris, Georgios E.}, title = {Theory and numerical approximations for a nonlinear 1 + 1 {Dirac} system}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {841--874}, publisher = {EDP-Sciences}, volume = {46}, number = {4}, year = {2012}, doi = {10.1051/m2an/2011071}, mrnumber = {2891472}, zbl = {1274.65232}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2011071/} }
TY - JOUR AU - Bournaveas, Nikolaos AU - Zouraris, Georgios E. TI - Theory and numerical approximations for a nonlinear 1 + 1 Dirac system JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2012 SP - 841 EP - 874 VL - 46 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2011071/ DO - 10.1051/m2an/2011071 LA - en ID - M2AN_2012__46_4_841_0 ER -
%0 Journal Article %A Bournaveas, Nikolaos %A Zouraris, Georgios E. %T Theory and numerical approximations for a nonlinear 1 + 1 Dirac system %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2012 %P 841-874 %V 46 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2011071/ %R 10.1051/m2an/2011071 %G en %F M2AN_2012__46_4_841_0
Bournaveas, Nikolaos; Zouraris, Georgios E. Theory and numerical approximations for a nonlinear 1 + 1 Dirac system. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 46 (2012) no. 4, pp. 841-874. doi: 10.1051/m2an/2011071
Cité par Sources :