Voir la notice de l'article provenant de la source Numdam
A new set of nonlocal boundary conditions is proposed for the higher modes of the 3D inviscid primitive equations. Numerical schemes using the splitting-up method are proposed for these modes. Numerical simulations of the full nonlinear primitive equations are performed on a nested set of domains, and the results are discussed.
@article{M2AN_2012__46_3_619_0, author = {Chen, Qingshan and Shiue, Ming-Cheng and Temam, Roger and Tribbia, Joseph}, title = {Numerical approximation of the inviscid {3D} primitive equations in a limited domain}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {619--646}, publisher = {EDP-Sciences}, volume = {46}, number = {3}, year = {2012}, doi = {10.1051/m2an/2011058}, mrnumber = {2877368}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2011058/} }
TY - JOUR AU - Chen, Qingshan AU - Shiue, Ming-Cheng AU - Temam, Roger AU - Tribbia, Joseph TI - Numerical approximation of the inviscid 3D primitive equations in a limited domain JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2012 SP - 619 EP - 646 VL - 46 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2011058/ DO - 10.1051/m2an/2011058 LA - en ID - M2AN_2012__46_3_619_0 ER -
%0 Journal Article %A Chen, Qingshan %A Shiue, Ming-Cheng %A Temam, Roger %A Tribbia, Joseph %T Numerical approximation of the inviscid 3D primitive equations in a limited domain %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2012 %P 619-646 %V 46 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2011058/ %R 10.1051/m2an/2011058 %G en %F M2AN_2012__46_3_619_0
Chen, Qingshan; Shiue, Ming-Cheng; Temam, Roger; Tribbia, Joseph. Numerical approximation of the inviscid 3D primitive equations in a limited domain. ESAIM: Mathematical Modelling and Numerical Analysis , Special volume in honor of Professor David Gottlieb. Numéro spécial, Tome 46 (2012) no. 3, pp. 619-646. doi: 10.1051/m2an/2011058
Cité par Sources :