Voir la notice de l'article provenant de la source Numdam
A number of approaches for discretizing partial differential equations with random data are based on generalized polynomial chaos expansions of random variables. These constitute generalizations of the polynomial chaos expansions introduced by Norbert Wiener to expansions in polynomials orthogonal with respect to non-Gaussian probability measures. We present conditions on such measures which imply mean-square convergence of generalized polynomial chaos expansions to the correct limit and complement these with illustrative examples.
@article{M2AN_2012__46_2_317_0, author = {Ernst, Oliver G. and Mugler, Antje and Starkloff, Hans-J\"org and Ullmann, Elisabeth}, title = {On the convergence of generalized polynomial chaos expansions}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {317--339}, publisher = {EDP-Sciences}, volume = {46}, number = {2}, year = {2012}, doi = {10.1051/m2an/2011045}, mrnumber = {2855645}, zbl = {1273.65012}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2011045/} }
TY - JOUR AU - Ernst, Oliver G. AU - Mugler, Antje AU - Starkloff, Hans-Jörg AU - Ullmann, Elisabeth TI - On the convergence of generalized polynomial chaos expansions JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2012 SP - 317 EP - 339 VL - 46 IS - 2 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2011045/ DO - 10.1051/m2an/2011045 LA - en ID - M2AN_2012__46_2_317_0 ER -
%0 Journal Article %A Ernst, Oliver G. %A Mugler, Antje %A Starkloff, Hans-Jörg %A Ullmann, Elisabeth %T On the convergence of generalized polynomial chaos expansions %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2012 %P 317-339 %V 46 %N 2 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2011045/ %R 10.1051/m2an/2011045 %G en %F M2AN_2012__46_2_317_0
Ernst, Oliver G.; Mugler, Antje; Starkloff, Hans-Jörg; Ullmann, Elisabeth. On the convergence of generalized polynomial chaos expansions. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 46 (2012) no. 2, pp. 317-339. doi: 10.1051/m2an/2011045
Cité par Sources :