Cell centered Galerkin methods for diffusive problems
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 46 (2012) no. 1, pp. 111-144

Voir la notice de l'article provenant de la source Numdam

In this work we introduce a new class of lowest order methods for diffusive problems on general meshes with only one unknown per element. The underlying idea is to construct an incomplete piecewise affine polynomial space with optimal approximation properties starting from values at cell centers. To do so we borrow ideas from multi-point finite volume methods, although we use them in a rather different context. The incomplete polynomial space replaces classical complete polynomial spaces in discrete formulations inspired by discontinuous Galerkin methods. Two problems are studied in this work: a heterogeneous anisotropic diffusion problem, which is used to lay the pillars of the method, and the incompressible Navier-Stokes equations, which provide a more realistic application. An exhaustive theoretical study as well as a set of numerical examples featuring different difficulties are provided.

DOI : 10.1051/m2an/2011016
Classification : 65N08, 65N30, 76D05
Keywords: cell centered Galerkin, finite volumes, discontinuous Galerkin, heterogeneous anisotropic diffusion, incompressible Navier-Stokes equations
@article{M2AN_2012__46_1_111_0,
     author = {Di Pietro, Daniele A.},
     title = {Cell centered {Galerkin} methods for diffusive problems},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {111--144},
     publisher = {EDP-Sciences},
     volume = {46},
     number = {1},
     year = {2012},
     doi = {10.1051/m2an/2011016},
     mrnumber = {2846369},
     zbl = {1279.65125},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2011016/}
}
TY  - JOUR
AU  - Di Pietro, Daniele A.
TI  - Cell centered Galerkin methods for diffusive problems
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2012
SP  - 111
EP  - 144
VL  - 46
IS  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2011016/
DO  - 10.1051/m2an/2011016
LA  - en
ID  - M2AN_2012__46_1_111_0
ER  - 
%0 Journal Article
%A Di Pietro, Daniele A.
%T Cell centered Galerkin methods for diffusive problems
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2012
%P 111-144
%V 46
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2011016/
%R 10.1051/m2an/2011016
%G en
%F M2AN_2012__46_1_111_0
Di Pietro, Daniele A. Cell centered Galerkin methods for diffusive problems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 46 (2012) no. 1, pp. 111-144. doi: 10.1051/m2an/2011016

Cité par Sources :