Convergence of Cell Based Finite Volume Discretizations for Problems of Control in the Conduction Coefficients
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 45 (2011) no. 6, pp. 1059-1080

Voir la notice de l'article provenant de la source Numdam

We present a convergence analysis of a cell-based finite volume (FV) discretization scheme applied to a problem of control in the coefficients of a generalized Laplace equation modelling, for example, a steady state heat conduction. Such problems arise in applications dealing with geometric optimal design, in particular shape and topology optimization, and are most often solved numerically utilizing a finite element approach. Within the FV framework for control in the coefficients problems the main difficulty we face is the need to analyze the convergence of fluxes defined on the faces of cells, whereas the convergence of the coefficients happens only with respect to the “volumetric” Lebesgue measure. Additionally, depending on whether the stationarity conditions are stated for the discretized or the original continuous problem, two distinct concepts of stationarity at a discrete level arise. We provide characterizations of limit points, with respect to FV mesh size, of globally optimal solutions and two types of stationary points to the discretized problems. We illustrate the practical behaviour of our cell-based FV discretization algorithm on a numerical example.

DOI : 10.1051/m2an/2011012
Classification : 65N08, 65N12, 49M05, 49M25
Keywords: topology optimization, finite volume methods
@article{M2AN_2011__45_6_1059_0,
     author = {Evgrafov, Anton and Gregersen, Misha Marie and S{\o}rensen, Mads Peter},
     title = {Convergence of {Cell} {Based} {Finite} {Volume} {Discretizations} for {Problems} of {Control} in the {Conduction} {Coefficients}},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1059--1080},
     publisher = {EDP-Sciences},
     volume = {45},
     number = {6},
     year = {2011},
     doi = {10.1051/m2an/2011012},
     mrnumber = {2833173},
     zbl = {1269.65107},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2011012/}
}
TY  - JOUR
AU  - Evgrafov, Anton
AU  - Gregersen, Misha Marie
AU  - Sørensen, Mads Peter
TI  - Convergence of Cell Based Finite Volume Discretizations for Problems of Control in the Conduction Coefficients
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2011
SP  - 1059
EP  - 1080
VL  - 45
IS  - 6
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2011012/
DO  - 10.1051/m2an/2011012
LA  - en
ID  - M2AN_2011__45_6_1059_0
ER  - 
%0 Journal Article
%A Evgrafov, Anton
%A Gregersen, Misha Marie
%A Sørensen, Mads Peter
%T Convergence of Cell Based Finite Volume Discretizations for Problems of Control in the Conduction Coefficients
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2011
%P 1059-1080
%V 45
%N 6
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2011012/
%R 10.1051/m2an/2011012
%G en
%F M2AN_2011__45_6_1059_0
Evgrafov, Anton; Gregersen, Misha Marie; Sørensen, Mads Peter. Convergence of Cell Based Finite Volume Discretizations for Problems of Control in the Conduction Coefficients. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 45 (2011) no. 6, pp. 1059-1080. doi: 10.1051/m2an/2011012

Cité par Sources :