Some energy conservative schemes for vibro-impacts of a beam on rigid obstacles
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 45 (2011) no. 6, pp. 1163-1192.

Voir la notice de l'article provenant de la source Numdam

Caused by the problem of unilateral contact during vibrations of satellite solar arrays, the aim of this paper is to better understand such a phenomenon. Therefore, it is studied here a simplified model composed by a beam moving between rigid obstacles. Our purpose is to describe and compare some families of fully discretized approximations and their properties, in the case of non-penetration Signorini's conditions. For this, starting from the works of Dumont and Paoli, we adapt to our beam model the singular dynamic method introduced by Renard. A particular emphasis is given in the use of a restitution coefficient in the impact law. Finally, various numerical results are presented and energy conservation capabilities of the schemes are investigated.

DOI : 10.1051/m2an/2011008
Classification : 35L85, 65M12, 74H15, 74H45
Keywords: variational inequalities, finite element method, elastic beam, dynamics, unilateral constraints, restitution coefficient
@article{M2AN_2011__45_6_1163_0,
     author = {Pozzolini, C. and Salaun, M.},
     title = {Some energy conservative schemes for vibro-impacts of a beam on rigid obstacles},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1163--1192},
     publisher = {EDP-Sciences},
     volume = {45},
     number = {6},
     year = {2011},
     doi = {10.1051/m2an/2011008},
     mrnumber = {2833177},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2011008/}
}
TY  - JOUR
AU  - Pozzolini, C.
AU  - Salaun, M.
TI  - Some energy conservative schemes for vibro-impacts of a beam on rigid obstacles
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2011
SP  - 1163
EP  - 1192
VL  - 45
IS  - 6
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2011008/
DO  - 10.1051/m2an/2011008
LA  - en
ID  - M2AN_2011__45_6_1163_0
ER  - 
%0 Journal Article
%A Pozzolini, C.
%A Salaun, M.
%T Some energy conservative schemes for vibro-impacts of a beam on rigid obstacles
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2011
%P 1163-1192
%V 45
%N 6
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2011008/
%R 10.1051/m2an/2011008
%G en
%F M2AN_2011__45_6_1163_0
Pozzolini, C.; Salaun, M. Some energy conservative schemes for vibro-impacts of a beam on rigid obstacles. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 45 (2011) no. 6, pp. 1163-1192. doi : 10.1051/m2an/2011008. http://geodesic.mathdoc.fr/articles/10.1051/m2an/2011008/

[1] J. Ahn and D.E. Stewart, An Euler-Bernoulli beam with dynamic contact: discretization, convergence and numerical results. SIAM J. Numer. Anal. 43 (2005) 1455-1480. | Zbl | MR

[2] N.J. Carpenter, Lagrange constraints for transient finite element surface contact. Internat. J. Numer. Methods Engrg. 32 (1991) 103-128. | Zbl

[3] P. Deuflhard, R. Krause and S. Ertel, A contact-stabilized Newmark method for dynamical contact problems. Internat. J. Numer. Methods Engrg. 73 (2007) 1274-1290. | Zbl | MR

[4] Y. Dumont and L. Paoli, Vibrations of a beam between obstacles: convergence of a fully discretized approximation. ESAIM: M2AN 40 (2006) 705-734. | Zbl | MR | mathdoc-id

[5] Y. Dumont and L. Paoli, Numerical simulation of a model of vibrations with joint clearance. Int. J. Comput. Appl. Technol. 33 (2008) 41-53.

[6] P. Hauret and P. Le Tallec, Energy controlling time integration methods for nonlinear elastodynamics and low-velocity impact. Comput. Methods Appl. Mech. Eng. 195 (2006) 4890-4916. | Zbl | MR

[7] H.B. Khenous, P. Laborde and Y. Renard, Mass redistribution method for finite element contact problems in elastodynamics. Eur. J. Mech. A. Solids 27 (2008) 918-932. | Zbl | MR

[8] K. Kuttler and M. Shillor, Vibrations of a beam between two stops, Dynamics of Continuous, Discrete and Impulsive Systems, Series B. Applications and Algorithms 8 (2001) 93-110. | Zbl | MR

[9] T.A. Laursen and V. Chawla, Design of energy conserving algorithms for frictionless dynamic contact problems. Internat. J. Numer. Methods Engrg. 40 (1997) 863-886. | Zbl | MR

[10] T.A. Laursen and G.R. Love, Improved implicit integrators for transient impact problems-geometric admissibility within the conserving framework. Internat. J. Numer. Methods Engrg. 53 (2002) 245-274. | Zbl | MR

[11] L. Paoli, Time discretization of vibro-impact. Philos. Trans. Roy. Soc. London A 359 (2001) 2405-2428. | Zbl | MR

[12] L. Paoli and M. Schatzman, A numerical scheme for impact problems. I. The one-dimensional case. SIAM J. Numer. Anal. 40 (2002) 702-733. | Zbl | MR

[13] L. Paoli and M. Schatzman, Numerical simulation of the dynamics of an impacting bar. Comput. Methods Appl. Mech. Eng. 196 (2007) 2839-2851. | Zbl | MR

[14] A. Petrov and M. Schatzman, Viscolastodynamique monodimensionnelle avec conditions de Signorini. C. R. Acad. Sci. Paris, I 334 (2002) 983-988. | Zbl | MR

[15] A. Petrov and M. Schatzman, A pseudodifferential linear complementarity problem related to a one dimensional viscoelastic model with Signorini condition. Arch. Rational Mech. Anal., to appear.

[16] Y. Renard, The singular dynamic method for constrained second order hyperbolic equations. Application to dynamic contact problems. J. Comput. Appl. Math. 234 (2010) 906-923. | MR

[17] R.L. Taylor and P. Papadopoulos, On a finite element method for dynamic contact-impact problems. Internat. J. Numer. Methods Engrg. 36 (1993) 2123-2140. | Zbl

Cité par Sources :