Voir la notice de l'article provenant de la source Numdam
Caused by the problem of unilateral contact during vibrations of satellite solar arrays, the aim of this paper is to better understand such a phenomenon. Therefore, it is studied here a simplified model composed by a beam moving between rigid obstacles. Our purpose is to describe and compare some families of fully discretized approximations and their properties, in the case of non-penetration Signorini's conditions. For this, starting from the works of Dumont and Paoli, we adapt to our beam model the singular dynamic method introduced by Renard. A particular emphasis is given in the use of a restitution coefficient in the impact law. Finally, various numerical results are presented and energy conservation capabilities of the schemes are investigated.
@article{M2AN_2011__45_6_1163_0, author = {Pozzolini, C. and Salaun, M.}, title = {Some energy conservative schemes for vibro-impacts of a beam on rigid obstacles}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1163--1192}, publisher = {EDP-Sciences}, volume = {45}, number = {6}, year = {2011}, doi = {10.1051/m2an/2011008}, mrnumber = {2833177}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2011008/} }
TY - JOUR AU - Pozzolini, C. AU - Salaun, M. TI - Some energy conservative schemes for vibro-impacts of a beam on rigid obstacles JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2011 SP - 1163 EP - 1192 VL - 45 IS - 6 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2011008/ DO - 10.1051/m2an/2011008 LA - en ID - M2AN_2011__45_6_1163_0 ER -
%0 Journal Article %A Pozzolini, C. %A Salaun, M. %T Some energy conservative schemes for vibro-impacts of a beam on rigid obstacles %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2011 %P 1163-1192 %V 45 %N 6 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2011008/ %R 10.1051/m2an/2011008 %G en %F M2AN_2011__45_6_1163_0
Pozzolini, C.; Salaun, M. Some energy conservative schemes for vibro-impacts of a beam on rigid obstacles. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 45 (2011) no. 6, pp. 1163-1192. doi : 10.1051/m2an/2011008. http://geodesic.mathdoc.fr/articles/10.1051/m2an/2011008/
[1] An Euler-Bernoulli beam with dynamic contact: discretization, convergence and numerical results. SIAM J. Numer. Anal. 43 (2005) 1455-1480. | Zbl | MR
and ,[2] Lagrange constraints for transient finite element surface contact. Internat. J. Numer. Methods Engrg. 32 (1991) 103-128. | Zbl
,[3] A contact-stabilized Newmark method for dynamical contact problems. Internat. J. Numer. Methods Engrg. 73 (2007) 1274-1290. | Zbl | MR
, and ,[4] Vibrations of a beam between obstacles: convergence of a fully discretized approximation. ESAIM: M2AN 40 (2006) 705-734. | Zbl | MR | mathdoc-id
and ,[5] Numerical simulation of a model of vibrations with joint clearance. Int. J. Comput. Appl. Technol. 33 (2008) 41-53.
and ,[6] Energy controlling time integration methods for nonlinear elastodynamics and low-velocity impact. Comput. Methods Appl. Mech. Eng. 195 (2006) 4890-4916. | Zbl | MR
and ,[7] Mass redistribution method for finite element contact problems in elastodynamics. Eur. J. Mech. A. Solids 27 (2008) 918-932. | Zbl | MR
, and ,[8] Vibrations of a beam between two stops, Dynamics of Continuous, Discrete and Impulsive Systems, Series B. Applications and Algorithms 8 (2001) 93-110. | Zbl | MR
and ,[9] Design of energy conserving algorithms for frictionless dynamic contact problems. Internat. J. Numer. Methods Engrg. 40 (1997) 863-886. | Zbl | MR
and ,[10] Improved implicit integrators for transient impact problems-geometric admissibility within the conserving framework. Internat. J. Numer. Methods Engrg. 53 (2002) 245-274. | Zbl | MR
and ,[11] Time discretization of vibro-impact. Philos. Trans. Roy. Soc. London A 359 (2001) 2405-2428. | Zbl | MR
,[12] A numerical scheme for impact problems. I. The one-dimensional case. SIAM J. Numer. Anal. 40 (2002) 702-733. | Zbl | MR
and ,[13] Numerical simulation of the dynamics of an impacting bar. Comput. Methods Appl. Mech. Eng. 196 (2007) 2839-2851. | Zbl | MR
and ,[14] Viscolastodynamique monodimensionnelle avec conditions de Signorini. C. R. Acad. Sci. Paris, I 334 (2002) 983-988. | Zbl | MR
and ,[15] A pseudodifferential linear complementarity problem related to a one dimensional viscoelastic model with Signorini condition. Arch. Rational Mech. Anal., to appear.
and ,[16] The singular dynamic method for constrained second order hyperbolic equations. Application to dynamic contact problems. J. Comput. Appl. Math. 234 (2010) 906-923. | MR
,[17] On a finite element method for dynamic contact-impact problems. Internat. J. Numer. Methods Engrg. 36 (1993) 2123-2140. | Zbl
and ,Cité par Sources :