A posteriori error analysis for the Crank-Nicolson method for linear Schrödinger equations
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 45 (2011) no. 4, pp. 761-778

Voir la notice de l'article provenant de la source Numdam

We prove a posteriori error estimates of optimal order for linear Schrödinger-type equations in the L(L2)- and the L(H1)-norm. We discretize only in time by the Crank-Nicolson method. The direct use of the reconstruction technique, as it has been proposed by Akrivis et al. in [Math. Comput. 75 (2006) 511-531], leads to a posteriori upper bounds that are of optimal order in the L(L2)-norm, but of suboptimal order in the L(H1)-norm. The optimality in the case of L(H1)-norm is recovered by using an auxiliary initial- and boundary-value problem.

DOI : 10.1051/m2an/2010101
Classification : 65M15, 35Q41
Keywords: linear Schrödinger equation, Crank-Nicolson method, crank-nicolson reconstruction, a posteriori error analysis, energy techniques, L∞(L2)- and L∞(H1)-norm
@article{M2AN_2011__45_4_761_0,
     author = {Kyza, Irene},
     title = {\protect\emph{A posteriori} error analysis for the {Crank-Nicolson} method for linear {Schr\"odinger} equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {761--778},
     publisher = {EDP-Sciences},
     volume = {45},
     number = {4},
     year = {2011},
     doi = {10.1051/m2an/2010101},
     zbl = {1269.65088},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2010101/}
}
TY  - JOUR
AU  - Kyza, Irene
TI  - A posteriori error analysis for the Crank-Nicolson method for linear Schrödinger equations
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2011
SP  - 761
EP  - 778
VL  - 45
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2010101/
DO  - 10.1051/m2an/2010101
LA  - en
ID  - M2AN_2011__45_4_761_0
ER  - 
%0 Journal Article
%A Kyza, Irene
%T A posteriori error analysis for the Crank-Nicolson method for linear Schrödinger equations
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2011
%P 761-778
%V 45
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2010101/
%R 10.1051/m2an/2010101
%G en
%F M2AN_2011__45_4_761_0
Kyza, Irene. A posteriori error analysis for the Crank-Nicolson method for linear Schrödinger equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 45 (2011) no. 4, pp. 761-778. doi: 10.1051/m2an/2010101

Cité par Sources :