Voir la notice de l'article provenant de la source Numdam
We prove a posteriori error estimates of optimal order for linear Schrödinger-type equations in the L∞(L2)- and the L∞(H1)-norm. We discretize only in time by the Crank-Nicolson method. The direct use of the reconstruction technique, as it has been proposed by Akrivis et al. in [Math. Comput. 75 (2006) 511-531], leads to a posteriori upper bounds that are of optimal order in the L∞(L2)-norm, but of suboptimal order in the L∞(H1)-norm. The optimality in the case of L∞(H1)-norm is recovered by using an auxiliary initial- and boundary-value problem.
@article{M2AN_2011__45_4_761_0, author = {Kyza, Irene}, title = {\protect\emph{A posteriori} error analysis for the {Crank-Nicolson} method for linear {Schr\"odinger} equations}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {761--778}, publisher = {EDP-Sciences}, volume = {45}, number = {4}, year = {2011}, doi = {10.1051/m2an/2010101}, zbl = {1269.65088}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2010101/} }
TY - JOUR AU - Kyza, Irene TI - A posteriori error analysis for the Crank-Nicolson method for linear Schrödinger equations JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2011 SP - 761 EP - 778 VL - 45 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2010101/ DO - 10.1051/m2an/2010101 LA - en ID - M2AN_2011__45_4_761_0 ER -
%0 Journal Article %A Kyza, Irene %T A posteriori error analysis for the Crank-Nicolson method for linear Schrödinger equations %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2011 %P 761-778 %V 45 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2010101/ %R 10.1051/m2an/2010101 %G en %F M2AN_2011__45_4_761_0
Kyza, Irene. A posteriori error analysis for the Crank-Nicolson method for linear Schrödinger equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 45 (2011) no. 4, pp. 761-778. doi: 10.1051/m2an/2010101
Cité par Sources :