Voir la notice de l'article provenant de la source Numdam
Cell-centered and vertex-centered finite volume schemes for the Laplace equation with homogeneous Dirichlet boundary conditions are considered on a triangular mesh and on the Voronoi diagram associated to its vertices. A broken P1 function is constructed from the solutions of both schemes. When the domain is two-dimensional polygonal convex, it is shown that this reconstruction converges with second-order accuracy towards the exact solution in the L2 norm, under the sufficient condition that the right-hand side of the Laplace equation belongs to H1(Ω).
@article{M2AN_2011__45_4_627_0, author = {Omnes, Pascal}, title = {On the second-order convergence of a function reconstructed from finite volume approximations of the {Laplace} equation on {Delaunay-Voronoi} meshes}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {627--650}, publisher = {EDP-Sciences}, volume = {45}, number = {4}, year = {2011}, doi = {10.1051/m2an/2010068}, mrnumber = {2804653}, zbl = {1269.65109}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2010068/} }
TY - JOUR AU - Omnes, Pascal TI - On the second-order convergence of a function reconstructed from finite volume approximations of the Laplace equation on Delaunay-Voronoi meshes JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2011 SP - 627 EP - 650 VL - 45 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2010068/ DO - 10.1051/m2an/2010068 LA - en ID - M2AN_2011__45_4_627_0 ER -
%0 Journal Article %A Omnes, Pascal %T On the second-order convergence of a function reconstructed from finite volume approximations of the Laplace equation on Delaunay-Voronoi meshes %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2011 %P 627-650 %V 45 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2010068/ %R 10.1051/m2an/2010068 %G en %F M2AN_2011__45_4_627_0
Omnes, Pascal. On the second-order convergence of a function reconstructed from finite volume approximations of the Laplace equation on Delaunay-Voronoi meshes. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 45 (2011) no. 4, pp. 627-650. doi: 10.1051/m2an/2010068
Cité par Sources :