Probabilistic methods for semilinear partial differential equations. Applications to finance
ESAIM: Mathematical Modelling and Numerical Analysis , Special Issue on Probabilistic methods and their applications, Tome 44 (2010) no. 5, pp. 1107-1133

Voir la notice de l'article provenant de la source Numdam

With the pioneering work of [Pardoux and Peng, Syst. Contr. Lett. 14 (1990) 55-61; Pardoux and Peng, Lecture Notes in Control and Information Sciences 176 (1992) 200-217]. We have at our disposal stochastic processes which solve the so-called backward stochastic differential equations. These processes provide us with a Feynman-Kac representation for the solutions of a class of nonlinear partial differential equations (PDEs) which appear in many applications in the field of Mathematical Finance. Therefore there is a great interest among both practitioners and theoreticians to develop reliable numerical methods for their numerical resolution. In this survey, we present a number of probabilistic methods for approximating solutions of semilinear PDEs all based on the corresponding Feynman-Kac representation. We also include a general introduction to backward stochastic differential equations and their connection with PDEs and provide a generic framework that accommodates existing probabilistic algorithms and facilitates the construction of new ones.

DOI : 10.1051/m2an/2010054
Classification : 65C30, 65C05, 60H07, 62G08
Keywords: probabilistic methods, semilinear PDEs, BSDEs, Monte Carlo methods, Malliavin calculus, cubature methods
@article{M2AN_2010__44_5_1107_0,
     author = {Crisan, Dan and Manolarakis, Konstantinos},
     title = {Probabilistic methods for semilinear partial differential equations. {Applications} to finance},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1107--1133},
     publisher = {EDP-Sciences},
     volume = {44},
     number = {5},
     year = {2010},
     doi = {10.1051/m2an/2010054},
     mrnumber = {2731405},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2010054/}
}
TY  - JOUR
AU  - Crisan, Dan
AU  - Manolarakis, Konstantinos
TI  - Probabilistic methods for semilinear partial differential equations. Applications to finance
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2010
SP  - 1107
EP  - 1133
VL  - 44
IS  - 5
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2010054/
DO  - 10.1051/m2an/2010054
LA  - en
ID  - M2AN_2010__44_5_1107_0
ER  - 
%0 Journal Article
%A Crisan, Dan
%A Manolarakis, Konstantinos
%T Probabilistic methods for semilinear partial differential equations. Applications to finance
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2010
%P 1107-1133
%V 44
%N 5
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2010054/
%R 10.1051/m2an/2010054
%G en
%F M2AN_2010__44_5_1107_0
Crisan, Dan; Manolarakis, Konstantinos. Probabilistic methods for semilinear partial differential equations. Applications to finance. ESAIM: Mathematical Modelling and Numerical Analysis , Special Issue on Probabilistic methods and their applications, Tome 44 (2010) no. 5, pp. 1107-1133. doi: 10.1051/m2an/2010054

Cité par Sources :