Enabling numerical accuracy of Navier-Stokes-α through deconvolution and enhanced stability
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 45 (2011) no. 2, pp. 277-307

Voir la notice de l'article provenant de la source Numdam

We propose and analyze a finite element method for approximating solutions to the Navier-Stokes-alpha model (NS-α) that utilizes approximate deconvolution and a modified grad-div stabilization and greatly improves accuracy in simulations. Standard finite element schemes for NS-α suffer from two major sources of error if their solutions are considered approximations to true fluid flow: (1) the consistency error arising from filtering; and (2) the dramatic effect of the large pressure error on the velocity error that arises from the (necessary) use of the rotational form nonlinearity. The proposed scheme “fixes” these two numerical issues through the combined use of a modified grad-div stabilization that acts in both the momentum and filter equations, and an adapted approximate deconvolution technique designed to work with the altered filter. We prove the scheme is stable, optimally convergent, and the effect of the pressure error on the velocity error is significantly reduced. Several numerical experiments are given that demonstrate the effectiveness of the method.

DOI : 10.1051/m2an/2010042
Classification : 65M12, 65M60, 76D05
Keywords: ns-alpha, grad-div stabilization, turbulence, approximate deconvolution
@article{M2AN_2011__45_2_277_0,
     author = {Manica, Carolina C. and Neda, Monika and Olshanskii, Maxim and Rebholz, Leo G.},
     title = {Enabling numerical accuracy of {Navier-Stokes-}$\alpha $ through deconvolution and enhanced stability},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {277--307},
     publisher = {EDP-Sciences},
     volume = {45},
     number = {2},
     year = {2011},
     doi = {10.1051/m2an/2010042},
     zbl = {1267.76021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2010042/}
}
TY  - JOUR
AU  - Manica, Carolina C.
AU  - Neda, Monika
AU  - Olshanskii, Maxim
AU  - Rebholz, Leo G.
TI  - Enabling numerical accuracy of Navier-Stokes-$\alpha $ through deconvolution and enhanced stability
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2011
SP  - 277
EP  - 307
VL  - 45
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2010042/
DO  - 10.1051/m2an/2010042
LA  - en
ID  - M2AN_2011__45_2_277_0
ER  - 
%0 Journal Article
%A Manica, Carolina C.
%A Neda, Monika
%A Olshanskii, Maxim
%A Rebholz, Leo G.
%T Enabling numerical accuracy of Navier-Stokes-$\alpha $ through deconvolution and enhanced stability
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2011
%P 277-307
%V 45
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2010042/
%R 10.1051/m2an/2010042
%G en
%F M2AN_2011__45_2_277_0
Manica, Carolina C.; Neda, Monika; Olshanskii, Maxim; Rebholz, Leo G. Enabling numerical accuracy of Navier-Stokes-$\alpha $ through deconvolution and enhanced stability. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 45 (2011) no. 2, pp. 277-307. doi: 10.1051/m2an/2010042

Cité par Sources :