Voir la notice de l'article provenant de la source Numdam
In this paper we construct a new H(div)-conforming projection-based p-interpolation operator that assumes only Hr(K) -1/2(div, K)-regularity (r > 0) on the reference element (either triangle or square) K. We show that this operator is stable with respect to polynomial degrees and satisfies the commuting diagram property. We also establish an estimate for the interpolation error in the norm of the space -1/2(div, K), which is closely related to the energy spaces for boundary integral formulations of time-harmonic problems of electromagnetics in three dimensions.
@article{M2AN_2011__45_2_255_0, author = {Bespalov, Alexei and Heuer, Norbert}, title = {A new {H(div)-conforming} $p$-interpolation operator in two dimensions}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {255--275}, publisher = {EDP-Sciences}, volume = {45}, number = {2}, year = {2011}, doi = {10.1051/m2an/2010039}, zbl = {1277.78031}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2010039/} }
TY - JOUR AU - Bespalov, Alexei AU - Heuer, Norbert TI - A new H(div)-conforming $p$-interpolation operator in two dimensions JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2011 SP - 255 EP - 275 VL - 45 IS - 2 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2010039/ DO - 10.1051/m2an/2010039 LA - en ID - M2AN_2011__45_2_255_0 ER -
%0 Journal Article %A Bespalov, Alexei %A Heuer, Norbert %T A new H(div)-conforming $p$-interpolation operator in two dimensions %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2011 %P 255-275 %V 45 %N 2 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2010039/ %R 10.1051/m2an/2010039 %G en %F M2AN_2011__45_2_255_0
Bespalov, Alexei; Heuer, Norbert. A new H(div)-conforming $p$-interpolation operator in two dimensions. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 45 (2011) no. 2, pp. 255-275. doi: 10.1051/m2an/2010039
Cité par Sources :