Voir la notice de l'article provenant de la source Numdam
We study the approximation properties of some finite element subspaces of H(div;Ω) and H(curl;Ω) defined on hexahedral meshes in three dimensions. This work extends results previously obtained for quadrilateral H(div;Ω) finite elements and for quadrilateral scalar finite element spaces. The finite element spaces we consider are constructed starting from a given finite dimensional space of vector fields on the reference cube, which is then transformed to a space of vector fields on a hexahedron using the appropriate transform (e.g., the Piola transform) associated to a trilinear isomorphism of the cube onto the hexahedron. After determining what vector fields are needed on the reference element to insure O(h) approximation in L2(Ω) and in H(div;Ω) and H(curl;Ω) on the physical element, we study the properties of the resulting finite element spaces.
@article{M2AN_2011__45_1_115_0,
author = {Falk, Richard S. and Gatto, Paolo and Monk, Peter},
title = {Hexahedral $\mathbf {H}(\operatorname{div})$ and $\mathbf {H}(\operatorname{curl})$ finite elements},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {115--143},
publisher = {EDP-Sciences},
volume = {45},
number = {1},
year = {2011},
doi = {10.1051/m2an/2010034},
zbl = {1270.65066},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2010034/}
}
TY - JOUR
AU - Falk, Richard S.
AU - Gatto, Paolo
AU - Monk, Peter
TI - Hexahedral $\mathbf {H}(\operatorname{div})$ and $\mathbf {H}(\operatorname{curl})$ finite elements
JO - ESAIM: Mathematical Modelling and Numerical Analysis
PY - 2011
SP - 115
EP - 143
VL - 45
IS - 1
PB - EDP-Sciences
UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2010034/
DO - 10.1051/m2an/2010034
LA - en
ID - M2AN_2011__45_1_115_0
ER -
%0 Journal Article
%A Falk, Richard S.
%A Gatto, Paolo
%A Monk, Peter
%T Hexahedral $\mathbf {H}(\operatorname{div})$ and $\mathbf {H}(\operatorname{curl})$ finite elements
%J ESAIM: Mathematical Modelling and Numerical Analysis
%D 2011
%P 115-143
%V 45
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2010034/
%R 10.1051/m2an/2010034
%G en
%F M2AN_2011__45_1_115_0
Falk, Richard S.; Gatto, Paolo; Monk, Peter. Hexahedral $\mathbf {H}(\operatorname{div})$ and $\mathbf {H}(\operatorname{curl})$ finite elements. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 45 (2011) no. 1, pp. 115-143. doi: 10.1051/m2an/2010034
Cité par Sources :