Voir la notice de l'article provenant de la source Numdam
We study the approximation properties of some finite element subspaces of H(div;Ω) and H(curl;Ω) defined on hexahedral meshes in three dimensions. This work extends results previously obtained for quadrilateral H(div;Ω) finite elements and for quadrilateral scalar finite element spaces. The finite element spaces we consider are constructed starting from a given finite dimensional space of vector fields on the reference cube, which is then transformed to a space of vector fields on a hexahedron using the appropriate transform (e.g., the Piola transform) associated to a trilinear isomorphism of the cube onto the hexahedron. After determining what vector fields are needed on the reference element to insure O(h) approximation in L2(Ω) and in H(div;Ω) and H(curl;Ω) on the physical element, we study the properties of the resulting finite element spaces.
@article{M2AN_2011__45_1_115_0, author = {Falk, Richard S. and Gatto, Paolo and Monk, Peter}, title = {Hexahedral $\mathbf {H}(\operatorname{div})$ and $\mathbf {H}(\operatorname{curl})$ finite elements}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {115--143}, publisher = {EDP-Sciences}, volume = {45}, number = {1}, year = {2011}, doi = {10.1051/m2an/2010034}, zbl = {1270.65066}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2010034/} }
TY - JOUR AU - Falk, Richard S. AU - Gatto, Paolo AU - Monk, Peter TI - Hexahedral $\mathbf {H}(\operatorname{div})$ and $\mathbf {H}(\operatorname{curl})$ finite elements JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2011 SP - 115 EP - 143 VL - 45 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2010034/ DO - 10.1051/m2an/2010034 LA - en ID - M2AN_2011__45_1_115_0 ER -
%0 Journal Article %A Falk, Richard S. %A Gatto, Paolo %A Monk, Peter %T Hexahedral $\mathbf {H}(\operatorname{div})$ and $\mathbf {H}(\operatorname{curl})$ finite elements %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2011 %P 115-143 %V 45 %N 1 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2010034/ %R 10.1051/m2an/2010034 %G en %F M2AN_2011__45_1_115_0
Falk, Richard S.; Gatto, Paolo; Monk, Peter. Hexahedral $\mathbf {H}(\operatorname{div})$ and $\mathbf {H}(\operatorname{curl})$ finite elements. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 45 (2011) no. 1, pp. 115-143. doi: 10.1051/m2an/2010034
Cité par Sources :