Voir la notice de l'article provenant de la source Numdam
The construction of a well-conditioned integral equation for iterative solution of scattering problems with a variable Leontovitch boundary condition is proposed. A suitable parametrix is obtained by using a new unknown and an approximation of the transparency condition. We prove the well-posedness of the equation for any wavenumber. Finally, some numerical comparisons with well-tried method prove the efficiency of the new formulation.
@article{M2AN_2010__44_4_781_0, author = {Pernet, S\'ebastien}, title = {A well-conditioned integral equation for iterative solution of scattering problems with a variable {Leontovitch} boundary condition}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {781--801}, publisher = {EDP-Sciences}, volume = {44}, number = {4}, year = {2010}, doi = {10.1051/m2an/2010023}, mrnumber = {2683583}, zbl = {1205.78025}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2010023/} }
TY - JOUR AU - Pernet, Sébastien TI - A well-conditioned integral equation for iterative solution of scattering problems with a variable Leontovitch boundary condition JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2010 SP - 781 EP - 801 VL - 44 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2010023/ DO - 10.1051/m2an/2010023 LA - en ID - M2AN_2010__44_4_781_0 ER -
%0 Journal Article %A Pernet, Sébastien %T A well-conditioned integral equation for iterative solution of scattering problems with a variable Leontovitch boundary condition %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2010 %P 781-801 %V 44 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2010023/ %R 10.1051/m2an/2010023 %G en %F M2AN_2010__44_4_781_0
Pernet, Sébastien. A well-conditioned integral equation for iterative solution of scattering problems with a variable Leontovitch boundary condition. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 44 (2010) no. 4, pp. 781-801. doi: 10.1051/m2an/2010023
Cité par Sources :