Voir la notice de l'article provenant de la source Numdam
We propose and analyse two convergent fully discrete schemes to solve the incompressible Navier-Stokes-Nernst-Planck-Poisson system. The first scheme converges to weak solutions satisfying an energy and an entropy dissipation law. The second scheme uses Chorin's projection method to obtain an efficient approximation that converges to strong solutions at optimal rates.
@article{M2AN_2010__44_3_531_0, author = {Prohl, Andreas and Schmuck, Markus}, title = {Convergent finite element discretizations of the {Navier-Stokes-Nernst-Planck-Poisson} system}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {531--571}, publisher = {EDP-Sciences}, volume = {44}, number = {3}, year = {2010}, doi = {10.1051/m2an/2010013}, mrnumber = {2666654}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2010013/} }
TY - JOUR AU - Prohl, Andreas AU - Schmuck, Markus TI - Convergent finite element discretizations of the Navier-Stokes-Nernst-Planck-Poisson system JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2010 SP - 531 EP - 571 VL - 44 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2010013/ DO - 10.1051/m2an/2010013 LA - en ID - M2AN_2010__44_3_531_0 ER -
%0 Journal Article %A Prohl, Andreas %A Schmuck, Markus %T Convergent finite element discretizations of the Navier-Stokes-Nernst-Planck-Poisson system %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2010 %P 531-571 %V 44 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2010013/ %R 10.1051/m2an/2010013 %G en %F M2AN_2010__44_3_531_0
Prohl, Andreas; Schmuck, Markus. Convergent finite element discretizations of the Navier-Stokes-Nernst-Planck-Poisson system. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 44 (2010) no. 3, pp. 531-571. doi: 10.1051/m2an/2010013
Cité par Sources :