Wavelet compression of anisotropic integrodifferential operators on sparse tensor product spaces
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 44 (2010) no. 1, pp. 33-73

Voir la notice de l'article provenant de la source Numdam

For a class of anisotropic integrodifferential operators arising as semigroup generators of Markov processes, we present a sparse tensor product wavelet compression scheme for the Galerkin finite element discretization of the corresponding integrodifferential equations u = f on [0,1]n with possibly large n. Under certain conditions on , the scheme is of essentially optimal and dimension independent complexity 𝒪(h-1| log h |2(n-1)) without corrupting the convergence or smoothness requirements of the original sparse tensor finite element scheme. If the conditions on are not satisfied, the complexity can be bounded by 𝒪(h-(1+ε)), where ε 1 tends to zero with increasing number of the wavelets’ vanishing moments. Here h denotes the width of the corresponding finite element mesh. The operators under consideration are assumed to be of non-negative (anisotropic) order and admit a non-standard kernel κ(·,·) that can be singular on all secondary diagonals. Practical examples of such operators from Mathematical Finance are given and some numerical results are presented.

DOI : 10.1051/m2an/2009039
Classification : 47A20, 65F50, 65N12, 65Y20, 68Q25, 45K05, 65N30
Keywords: wavelet compression, sparse grids, anisotropic integrodifferential operators, norm equivalences
@article{M2AN_2010__44_1_33_0,
     author = {Reich, Nils},
     title = {Wavelet compression of anisotropic integrodifferential operators on sparse tensor product spaces},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {33--73},
     publisher = {EDP-Sciences},
     volume = {44},
     number = {1},
     year = {2010},
     doi = {10.1051/m2an/2009039},
     mrnumber = {2647753},
     zbl = {1189.65311},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2009039/}
}
TY  - JOUR
AU  - Reich, Nils
TI  - Wavelet compression of anisotropic integrodifferential operators on sparse tensor product spaces
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2010
SP  - 33
EP  - 73
VL  - 44
IS  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2009039/
DO  - 10.1051/m2an/2009039
LA  - en
ID  - M2AN_2010__44_1_33_0
ER  - 
%0 Journal Article
%A Reich, Nils
%T Wavelet compression of anisotropic integrodifferential operators on sparse tensor product spaces
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2010
%P 33-73
%V 44
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2009039/
%R 10.1051/m2an/2009039
%G en
%F M2AN_2010__44_1_33_0
Reich, Nils. Wavelet compression of anisotropic integrodifferential operators on sparse tensor product spaces. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 44 (2010) no. 1, pp. 33-73. doi: 10.1051/m2an/2009039

Cité par Sources :