Voir la notice de l'article provenant de la source Numdam
We present a phase field approach to wetting problems, related to the minimization of capillary energy. We discuss in detail both the -convergence results on which our numerical algorithm are based, and numerical implementation. Two possible choices of boundary conditions, needed to recover Young’s law for the contact angle, are presented. We also consider an extension of the classical theory of capillarity, in which the introduction of a dissipation mechanism can explain and predict the hysteresis of the contact angle. We illustrate the performance of the model by reproducing numerically a broad spectrum of experimental results: advancing and receding drops, drops on inclined planes and superhydrophobic surfaces.
@article{M2AN_2009__43_6_1027_0, author = {Turco, Alessandro and Alouges, Fran\c{c}ois and DeSimone, Antonio}, title = {Wetting on rough surfaces and contact angle hysteresis : numerical experiments based on a phase field model}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1027--1044}, publisher = {EDP-Sciences}, volume = {43}, number = {6}, year = {2009}, doi = {10.1051/m2an/2009016}, mrnumber = {2588431}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2009016/} }
TY - JOUR AU - Turco, Alessandro AU - Alouges, François AU - DeSimone, Antonio TI - Wetting on rough surfaces and contact angle hysteresis : numerical experiments based on a phase field model JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2009 SP - 1027 EP - 1044 VL - 43 IS - 6 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2009016/ DO - 10.1051/m2an/2009016 LA - en ID - M2AN_2009__43_6_1027_0 ER -
%0 Journal Article %A Turco, Alessandro %A Alouges, François %A DeSimone, Antonio %T Wetting on rough surfaces and contact angle hysteresis : numerical experiments based on a phase field model %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2009 %P 1027-1044 %V 43 %N 6 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2009016/ %R 10.1051/m2an/2009016 %G en %F M2AN_2009__43_6_1027_0
Turco, Alessandro; Alouges, François; DeSimone, Antonio. Wetting on rough surfaces and contact angle hysteresis : numerical experiments based on a phase field model. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 43 (2009) no. 6, pp. 1027-1044. doi : 10.1051/m2an/2009016. http://geodesic.mathdoc.fr/articles/10.1051/m2an/2009016/
[1] Wetting of rough surfaces: a homogenization approach. Proc. R. Soc. A 461 (2005) 79-97. | Zbl | MR
and ,[2] Quasistatic evolution of sessile drops and contact angle hysteresis. In preparation (2009).
and ,[3] Phase transition with line-tension effect. Arch. Rat. Mech. Anal. 144 (1998) 1-46. | Zbl | MR
, and ,[4] -convergence and numerical analysis: an application to the minimal partition problem. Ricerche di Matematica 1 (1991) 33-64. | Zbl | MR
and ,[5] Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow. SIAM J. Sci. Comp. 25 (2004) 1674. | Zbl | MR
and ,[6] -convergence for beginners. Oxford University Press (2002). | MR
,[7] On water repellency. Soft Matter 1 (2005) 55-61.
and ,[8] An introduction to -convergence. Birkhaüser (1993). | Zbl | MR
,[9] Capillarity and Wetting Phenomena. Springer (2004). | Zbl
, and ,[10] A new model for contact angle hysteresis. Networks and Heterogeneous Media 2 (2007) 211-225 | Zbl | MR
, and ,[11] Equilibrium Capillary Surfaces. Springer (1986). | Zbl | MR
,[12] Superhydrophobic states. Nature Materials 2 (2003) 457-460.
and ,[13] Gradient theory of phase transitions with boundary contact energy. Ann. Inst. H. Poincaré Anal. Non Linéaire 5 (1987) 497. | Zbl | MR | mathdoc-id
,[14] Un esempio di -convergenza. Boll. Un. Mat. It. B 14 (1977) 285-299. | Zbl | MR
and ,[15] On the modeling of hydrophobic contact angles on rough surfaces. Langmuir 19 (2003) 1249-1253.
,[16] An increased accuracy scheme for diffusion equations in cylindrical coordinates. J. Inst. Math. Appl. 14 (1974) 197-201. | Zbl | MR
,[17] Moving contact lines in the Cahn-Hilliard theory. Int. J. Engng. Sci. 34 (1996) 977-992. | Zbl
,[18] Finite Difference Schemes and PDE. SIAM (2004). | MR
,Cité par Sources :