Voir la notice de l'article provenant de la source Numdam
We analyze two numerical schemes of Euler type in time and finite-element type with -approximation in space for solving a phase-field model of a binary alloy with thermal properties. This model is written as a highly non-linear parabolic system with three unknowns: phase-field, solute concentration and temperature, where the diffusion for the temperature and solute concentration may degenerate. The first scheme is nonlinear, unconditionally stable and convergent. The other scheme is linear but conditionally stable and convergent. A maximum principle is avoided in both schemes, using a truncation operator on the projection onto the finite element for the discrete concentration. In addition, for the model when the heat conductivity and solute diffusion coefficients are constants, optimal error estimates for both schemes are shown based on stability estimates.
@article{M2AN_2009__43_3_563_0, author = {Guill\'en-Gonz\'alez, Francisco and Guti\'errez-Santacreu, Juan Vicente}, title = {Stability and convergence of two discrete schemes for a degenerate solutal non-isothermal phase-field model}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {563--589}, publisher = {EDP-Sciences}, volume = {43}, number = {3}, year = {2009}, doi = {10.1051/m2an/2009011}, mrnumber = {2536249}, zbl = {1171.80006}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2009011/} }
TY - JOUR AU - Guillén-González, Francisco AU - Gutiérrez-Santacreu, Juan Vicente TI - Stability and convergence of two discrete schemes for a degenerate solutal non-isothermal phase-field model JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2009 SP - 563 EP - 589 VL - 43 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2009011/ DO - 10.1051/m2an/2009011 LA - en ID - M2AN_2009__43_3_563_0 ER -
%0 Journal Article %A Guillén-González, Francisco %A Gutiérrez-Santacreu, Juan Vicente %T Stability and convergence of two discrete schemes for a degenerate solutal non-isothermal phase-field model %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2009 %P 563-589 %V 43 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2009011/ %R 10.1051/m2an/2009011 %G en %F M2AN_2009__43_3_563_0
Guillén-González, Francisco; Gutiérrez-Santacreu, Juan Vicente. Stability and convergence of two discrete schemes for a degenerate solutal non-isothermal phase-field model. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 43 (2009) no. 3, pp. 563-589. doi : 10.1051/m2an/2009011. http://geodesic.mathdoc.fr/articles/10.1051/m2an/2009011/
[1] Weak solutions of a phase-field model for phase change of an alloy with thermal properties. Math. Methods Appl. Sci. 25 (2002) 1177-1193. | Zbl | MR
and ,[2] A semidiscretization scheme for a phase-field type model for solidification. Port. Math. (N.S.) 63 (2006) 261-292. | Zbl | MR
and ,[3] The Mathematical Theory of Finite Element Methods, Texts in Applied Mathathematics 15. Springer-Verlag, Berlin (1994). | Zbl | MR
and ,[4] Convergence of the finite element method applied to an anisotropic phase-field model. Ann. Math. Blaise Pascal 11 (2004) 67-94. | Zbl | MR | mathdoc-id
, and ,[5] Phase-field and sharp-interface alloy models. Phys. Rev. E 48 (1993) 1897-1909. | MR
and ,[6] Theory and practice of finite elements, Applied Mathematical Sciences 159. Springer, New York (2004). | Zbl | MR
and ,[7] Analysis of a fully discrete finite element method for the phase field model and approximation of its sharp interface limits. Math. Comp. 73 (2004) 541-567. | Zbl | MR
and ,[8] Unconditional stability and convergence of a fully discrete scheme for viscous fluids models with mass diffusion. Math. Comp. 77 (2008) 1495-1524 (electronic). | MR
and ,[9] Introduction à la Théorie des Points Critiques, Mathématiques et Applications 13. Springer, Berlin (1993). | Zbl | MR
,[10] A priori error estimates of a finite-element method for an isothermal phase-field model related to the solidification process of a binary alloy. IMA J. Numer. Anal. 22 (2002) 281-305. | Zbl | MR
and ,[11] Some optimal error estimates for piecewise linear finite element approximations. Math. Comp. 38 (1982) 437-445. | Zbl | MR
and ,[12] Global solutions to a degenerate solutal phase field model for the solidification of a binary alloy. Nonlinear Anal. 5 (2004) 207-217. | Zbl | MR
,[13] Compact sets in the Space . Ann. Mat. Pura Appl. 146 (1987) 65-97. | Zbl | MR
,Cité par Sources :