Voir la notice de l'article provenant de la source Numdam
The MATRIX PACKING DOWN problem asks to find a row permutation of a given -matrix in such a way that the total sum of the first non-zero column indexes is maximized. We study the computational complexity of this problem. We prove that the MATRIX PACKING DOWN problem is NP-complete even when restricted to zero trace symmetric -matrices or to -matrices with at most two ’s per column. Also, as intermediate results, we introduce several new simple graph layout problems which are proved to be NP-complete.
@article{ITA_2006__40_4_519_0, author = {Vialette, St\'ephane}, title = {Packing of (0, 1)-matrices}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {519--535}, publisher = {EDP-Sciences}, volume = {40}, number = {4}, year = {2006}, doi = {10.1051/ita:2006037}, mrnumber = {2277046}, zbl = {1110.68049}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ita:2006037/} }
TY - JOUR AU - Vialette, Stéphane TI - Packing of (0, 1)-matrices JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2006 SP - 519 EP - 535 VL - 40 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ita:2006037/ DO - 10.1051/ita:2006037 LA - en ID - ITA_2006__40_4_519_0 ER -
%0 Journal Article %A Vialette, Stéphane %T Packing of (0, 1)-matrices %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2006 %P 519-535 %V 40 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ita:2006037/ %R 10.1051/ita:2006037 %G en %F ITA_2006__40_4_519_0
Vialette, Stéphane. Packing of (0, 1)-matrices. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 40 (2006) no. 4, pp. 519-535. doi: 10.1051/ita:2006037
Cité par Sources :