Voir la notice de l'article provenant de la source Numdam
The arithmetical complexity of infinite words, defined by Avgustinovich, Fon-Der-Flaass and the author in 2000, is the number of words of length which occur in the arithmetical subsequences of the infinite word. This is one of the modifications of the classical function of subword complexity, which is equal to the number of factors of the infinite word of length . In this paper, we show that the orders of growth of the arithmetical complexity can behave as many sub-polynomial functions. More precisely, for each sequence of subword complexity and for each prime we build a Toeplitz word on the same alphabet whose arithmetical complexity is .
@article{ITA_2006__40_3_443_0, author = {Frid, Anna E.}, title = {On possible growths of arithmetical complexity}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {443--458}, publisher = {EDP-Sciences}, volume = {40}, number = {3}, year = {2006}, doi = {10.1051/ita:2006021}, mrnumber = {2269203}, zbl = {1110.68120}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ita:2006021/} }
TY - JOUR AU - Frid, Anna E. TI - On possible growths of arithmetical complexity JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2006 SP - 443 EP - 458 VL - 40 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ita:2006021/ DO - 10.1051/ita:2006021 LA - en ID - ITA_2006__40_3_443_0 ER -
%0 Journal Article %A Frid, Anna E. %T On possible growths of arithmetical complexity %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2006 %P 443-458 %V 40 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ita:2006021/ %R 10.1051/ita:2006021 %G en %F ITA_2006__40_3_443_0
Frid, Anna E. On possible growths of arithmetical complexity. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 40 (2006) no. 3, pp. 443-458. doi: 10.1051/ita:2006021
Cité par Sources :