Voir la notice de l'article provenant de la source Numdam
Let be a finite set of words and be the derivation relation generated by the set of productions . Let be the set of words such that . We prove that the set is unavoidable if and only if the relation is a well quasi-order on the set . This result generalizes a theorem of [Ehrenfeucht et al., Theor. Comput. Sci. 27 (1983) 311-332]. Further generalizations are investigated.
@article{ITA_2006__40_3_407_0, author = {D'Alessandro, Flavio and Varricchio, Stefano}, title = {Well quasi-orders, unavoidable sets, and derivation systems}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {407--426}, publisher = {EDP-Sciences}, volume = {40}, number = {3}, year = {2006}, doi = {10.1051/ita:2006019}, zbl = {1110.68060}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ita:2006019/} }
TY - JOUR AU - D'Alessandro, Flavio AU - Varricchio, Stefano TI - Well quasi-orders, unavoidable sets, and derivation systems JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2006 SP - 407 EP - 426 VL - 40 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ita:2006019/ DO - 10.1051/ita:2006019 LA - en ID - ITA_2006__40_3_407_0 ER -
%0 Journal Article %A D'Alessandro, Flavio %A Varricchio, Stefano %T Well quasi-orders, unavoidable sets, and derivation systems %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2006 %P 407-426 %V 40 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ita:2006019/ %R 10.1051/ita:2006019 %G en %F ITA_2006__40_3_407_0
D'Alessandro, Flavio; Varricchio, Stefano. Well quasi-orders, unavoidable sets, and derivation systems. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 40 (2006) no. 3, pp. 407-426. doi: 10.1051/ita:2006019
Cité par Sources :