Algebraic and graph-theoretic properties of infinite n-posets
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 39 (2005) no. 1, pp. 305-322

Voir la notice de l'article provenant de la source Numdam

A Σ-labeled n-poset is an (at most) countable set, labeled in the set Σ, equipped with n partial orders. The collection of all Σ-labeled n-posets is naturally equipped with n binary product operations and n ω-ary product operations. Moreover, the ω-ary product operations give rise to n ω-power operations. We show that those Σ-labeled n-posets that can be generated from the singletons by the binary and ω-ary product operations form the free algebra on Σ in a variety axiomatizable by an infinite collection of simple equations. When n=1, this variety coincides with the class of ω-semigroups of Perrin and Pin. Moreover, we show that those Σ-labeled n-posets that can be generated from the singletons by the binary product operations and the ω-power operations form the free algebra on Σ in a related variety that generalizes Wilke’s algebras. We also give graph-theoretic characterizations of those n-posets contained in the above free algebras. Our results serve as a preliminary study to a development of a theory of higher dimensional automata and languages on infinitary associative structures.

DOI : 10.1051/ita:2005018
Classification : 68Q45, 68R99
Keywords: poset, $n$-poset, composition, free algebra, equational logic
@article{ITA_2005__39_1_305_0,
     author = {\'Esik, Zolt\'an and N\'emeth, Zolt\'an L.},
     title = {Algebraic and graph-theoretic properties of infinite $n$-posets},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {305--322},
     publisher = {EDP-Sciences},
     volume = {39},
     number = {1},
     year = {2005},
     doi = {10.1051/ita:2005018},
     mrnumber = {2132594},
     zbl = {1102.68060},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ita:2005018/}
}
TY  - JOUR
AU  - Ésik, Zoltán
AU  - Németh, Zoltán L.
TI  - Algebraic and graph-theoretic properties of infinite $n$-posets
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2005
SP  - 305
EP  - 322
VL  - 39
IS  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ita:2005018/
DO  - 10.1051/ita:2005018
LA  - en
ID  - ITA_2005__39_1_305_0
ER  - 
%0 Journal Article
%A Ésik, Zoltán
%A Németh, Zoltán L.
%T Algebraic and graph-theoretic properties of infinite $n$-posets
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2005
%P 305-322
%V 39
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ita:2005018/
%R 10.1051/ita:2005018
%G en
%F ITA_2005__39_1_305_0
Ésik, Zoltán; Németh, Zoltán L. Algebraic and graph-theoretic properties of infinite $n$-posets. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 39 (2005) no. 1, pp. 305-322. doi: 10.1051/ita:2005018

Cité par Sources :