Voir la notice de l'article provenant de la source Numdam
We prove that the pseudovariety of monoids of Krohn-Rhodes complexity at most is not finitely based for all . More specifically, for each pair of positive integers , we construct a monoid of complexity , all of whose -generated submonoids have complexity at most .
@article{ITA_2005__39_1_279_0, author = {Rhodes, John and Steinberg, Benjamin}, title = {Krohn-Rhodes complexity pseudovarieties are not finitely based}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {279--296}, publisher = {EDP-Sciences}, volume = {39}, number = {1}, year = {2005}, doi = {10.1051/ita:2005016}, mrnumber = {2132592}, zbl = {1083.20050}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ita:2005016/} }
TY - JOUR AU - Rhodes, John AU - Steinberg, Benjamin TI - Krohn-Rhodes complexity pseudovarieties are not finitely based JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2005 SP - 279 EP - 296 VL - 39 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ita:2005016/ DO - 10.1051/ita:2005016 LA - en ID - ITA_2005__39_1_279_0 ER -
%0 Journal Article %A Rhodes, John %A Steinberg, Benjamin %T Krohn-Rhodes complexity pseudovarieties are not finitely based %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2005 %P 279-296 %V 39 %N 1 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ita:2005016/ %R 10.1051/ita:2005016 %G en %F ITA_2005__39_1_279_0
Rhodes, John; Steinberg, Benjamin. Krohn-Rhodes complexity pseudovarieties are not finitely based. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 39 (2005) no. 1, pp. 279-296. doi: 10.1051/ita:2005016
Cité par Sources :