Some results on 𝒞-varieties
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 39 (2005) no. 1, pp. 239-262

Voir la notice de l'article provenant de la source Numdam

In an earlier paper, the second author generalized Eilenberg’s variety theory by establishing a basic correspondence between certain classes of monoid morphisms and families of regular languages. We extend this theory in several directions. First, we prove a version of Reiterman’s theorem concerning the definition of varieties by identities, and illustrate this result by describing the identities associated with languages of the form (a 1 a 2 a k ) + , where a 1 ,...,a k are distinct letters. Next, we generalize the notions of Mal’cev product, positive varieties, and polynomial closure. Our results not only extend those already known, but permit a unified approach of different cases that previously required separate treatment.

DOI : 10.1051/ita:2005014
Classification : 20M35, 68Q70
@article{ITA_2005__39_1_239_0,
     author = {Pin, Jean-\'Eric and Straubing, Howard},
     title = {Some results on $\mathcal {C}$-varieties},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {239--262},
     publisher = {EDP-Sciences},
     volume = {39},
     number = {1},
     year = {2005},
     doi = {10.1051/ita:2005014},
     mrnumber = {2132590},
     zbl = {1083.20059},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ita:2005014/}
}
TY  - JOUR
AU  - Pin, Jean-Éric
AU  - Straubing, Howard
TI  - Some results on $\mathcal {C}$-varieties
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2005
SP  - 239
EP  - 262
VL  - 39
IS  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ita:2005014/
DO  - 10.1051/ita:2005014
LA  - en
ID  - ITA_2005__39_1_239_0
ER  - 
%0 Journal Article
%A Pin, Jean-Éric
%A Straubing, Howard
%T Some results on $\mathcal {C}$-varieties
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2005
%P 239-262
%V 39
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ita:2005014/
%R 10.1051/ita:2005014
%G en
%F ITA_2005__39_1_239_0
Pin, Jean-Éric; Straubing, Howard. Some results on $\mathcal {C}$-varieties. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 39 (2005) no. 1, pp. 239-262. doi: 10.1051/ita:2005014

Cité par Sources :