Voir la notice de l'article provenant de la source Numdam
In an earlier paper, the second author generalized Eilenberg’s variety theory by establishing a basic correspondence between certain classes of monoid morphisms and families of regular languages. We extend this theory in several directions. First, we prove a version of Reiterman’s theorem concerning the definition of varieties by identities, and illustrate this result by describing the identities associated with languages of the form , where are distinct letters. Next, we generalize the notions of Mal’cev product, positive varieties, and polynomial closure. Our results not only extend those already known, but permit a unified approach of different cases that previously required separate treatment.
@article{ITA_2005__39_1_239_0, author = {Pin, Jean-\'Eric and Straubing, Howard}, title = {Some results on $\mathcal {C}$-varieties}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {239--262}, publisher = {EDP-Sciences}, volume = {39}, number = {1}, year = {2005}, doi = {10.1051/ita:2005014}, mrnumber = {2132590}, zbl = {1083.20059}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ita:2005014/} }
TY - JOUR AU - Pin, Jean-Éric AU - Straubing, Howard TI - Some results on $\mathcal {C}$-varieties JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2005 SP - 239 EP - 262 VL - 39 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ita:2005014/ DO - 10.1051/ita:2005014 LA - en ID - ITA_2005__39_1_239_0 ER -
%0 Journal Article %A Pin, Jean-Éric %A Straubing, Howard %T Some results on $\mathcal {C}$-varieties %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2005 %P 239-262 %V 39 %N 1 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ita:2005014/ %R 10.1051/ita:2005014 %G en %F ITA_2005__39_1_239_0
Pin, Jean-Éric; Straubing, Howard. Some results on $\mathcal {C}$-varieties. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 39 (2005) no. 1, pp. 239-262. doi: 10.1051/ita:2005014
Cité par Sources :