Voir la notice de l'article provenant de la source Numdam
We associate with a word on a finite alphabet an episturmian (or Arnoux-Rauzy) morphism and a palindrome. We study their relations with the similar ones for the reversal of . Then when we deduce, using the sturmian words that are the fixed points of the two morphisms, a proof of a Galois theorem on purely periodic continued fractions whose periods are the reversal of each other.
@article{ITA_2005__39_1_207_0, author = {Justin, Jacques}, title = {Episturmian morphisms and a {Galois} theorem on continued fractions}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {207--215}, publisher = {EDP-Sciences}, volume = {39}, number = {1}, year = {2005}, doi = {10.1051/ita:2005012}, mrnumber = {2132588}, zbl = {1126.68519}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ita:2005012/} }
TY - JOUR AU - Justin, Jacques TI - Episturmian morphisms and a Galois theorem on continued fractions JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2005 SP - 207 EP - 215 VL - 39 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ita:2005012/ DO - 10.1051/ita:2005012 LA - en ID - ITA_2005__39_1_207_0 ER -
%0 Journal Article %A Justin, Jacques %T Episturmian morphisms and a Galois theorem on continued fractions %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2005 %P 207-215 %V 39 %N 1 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ita:2005012/ %R 10.1051/ita:2005012 %G en %F ITA_2005__39_1_207_0
Justin, Jacques. Episturmian morphisms and a Galois theorem on continued fractions. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 39 (2005) no. 1, pp. 207-215. doi: 10.1051/ita:2005012
Cité par Sources :