Voir la notice de l'article provenant de la source Numdam
We prove in this paper that there exists some infinitary rational relations which are analytic but non Borel sets, giving an answer to a question of Simonnet [20].
@article{ITA_2003__37_2_105_0, author = {Finkel, Olivier}, title = {On the topological complexity of infinitary rational relations}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {105--113}, publisher = {EDP-Sciences}, volume = {37}, number = {2}, year = {2003}, doi = {10.1051/ita:2003016}, mrnumber = {2015686}, zbl = {1112.03313}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ita:2003016/} }
TY - JOUR AU - Finkel, Olivier TI - On the topological complexity of infinitary rational relations JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2003 SP - 105 EP - 113 VL - 37 IS - 2 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ita:2003016/ DO - 10.1051/ita:2003016 LA - en ID - ITA_2003__37_2_105_0 ER -
%0 Journal Article %A Finkel, Olivier %T On the topological complexity of infinitary rational relations %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2003 %P 105-113 %V 37 %N 2 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ita:2003016/ %R 10.1051/ita:2003016 %G en %F ITA_2003__37_2_105_0
Finkel, Olivier. On the topological complexity of infinitary rational relations. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 37 (2003) no. 2, pp. 105-113. doi: 10.1051/ita:2003016
Cité par Sources :