On the topological complexity of infinitary rational relations
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 37 (2003) no. 2, pp. 105-113
Cet article a éte moissonné depuis la source Numdam
We prove in this paper that there exists some infinitary rational relations which are analytic but non Borel sets, giving an answer to a question of Simonnet [20].
DOI :
10.1051/ita:2003016
Classification :
68Q45, 03D05, 03D55, 03E15
Keywords: infinitary rational relations, topological properties, Borel and analytic sets
Keywords: infinitary rational relations, topological properties, Borel and analytic sets
@article{ITA_2003__37_2_105_0,
author = {Finkel, Olivier},
title = {On the topological complexity of infinitary rational relations},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
pages = {105--113},
year = {2003},
publisher = {EDP-Sciences},
volume = {37},
number = {2},
doi = {10.1051/ita:2003016},
mrnumber = {2015686},
zbl = {1112.03313},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/ita:2003016/}
}
TY - JOUR AU - Finkel, Olivier TI - On the topological complexity of infinitary rational relations JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2003 SP - 105 EP - 113 VL - 37 IS - 2 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ita:2003016/ DO - 10.1051/ita:2003016 LA - en ID - ITA_2003__37_2_105_0 ER -
%0 Journal Article %A Finkel, Olivier %T On the topological complexity of infinitary rational relations %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2003 %P 105-113 %V 37 %N 2 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ita:2003016/ %R 10.1051/ita:2003016 %G en %F ITA_2003__37_2_105_0
Finkel, Olivier. On the topological complexity of infinitary rational relations. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 37 (2003) no. 2, pp. 105-113. doi: 10.1051/ita:2003016
Cité par Sources :