On the topological complexity of infinitary rational relations
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 37 (2003) no. 2, pp. 105-113.

Voir la notice de l'article provenant de la source Numdam

We prove in this paper that there exists some infinitary rational relations which are analytic but non Borel sets, giving an answer to a question of Simonnet [20].

DOI : 10.1051/ita:2003016
Classification : 68Q45, 03D05, 03D55, 03E15
Keywords: infinitary rational relations, topological properties, Borel and analytic sets
@article{ITA_2003__37_2_105_0,
     author = {Finkel, Olivier},
     title = {On the topological complexity of infinitary rational relations},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {105--113},
     publisher = {EDP-Sciences},
     volume = {37},
     number = {2},
     year = {2003},
     doi = {10.1051/ita:2003016},
     mrnumber = {2015686},
     zbl = {1112.03313},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ita:2003016/}
}
TY  - JOUR
AU  - Finkel, Olivier
TI  - On the topological complexity of infinitary rational relations
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2003
SP  - 105
EP  - 113
VL  - 37
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ita:2003016/
DO  - 10.1051/ita:2003016
LA  - en
ID  - ITA_2003__37_2_105_0
ER  - 
%0 Journal Article
%A Finkel, Olivier
%T On the topological complexity of infinitary rational relations
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2003
%P 105-113
%V 37
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ita:2003016/
%R 10.1051/ita:2003016
%G en
%F ITA_2003__37_2_105_0
Finkel, Olivier. On the topological complexity of infinitary rational relations. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 37 (2003) no. 2, pp. 105-113. doi : 10.1051/ita:2003016. http://geodesic.mathdoc.fr/articles/10.1051/ita:2003016/

[1] M.-P. Béal and O. Carton, Determinization of Transducers over Infinite Words, in ICALP'2000, edited by U. Montanari et al. Springer, Lect. Notes Comput. Sci. 1853 (2000) 561-570. | Zbl

[2] J. Berstel, Transductions and Context Free Languages. Teubner Verlag (1979). | Zbl | MR

[3] J.R. Büchi, On a Decision Method in Restricted Second Order Arithmetic, Logic Methodology and Philosophy of Science, in Proc. 1960 Int. Congr. Stanford University Press (1962) 1-11. | Zbl | MR

[4] Ch. Choffrut, Une Caractérisation des Fonctions Séquentielles et des Fonctions Sous-Séquentielles en tant que Relations Rationnelles. Theoret. Comput. Sci. 5 (1977) 325-338. | Zbl | MR

[5] Ch. Choffrut and S. Grigorieff, Uniformization of Rational Relations, Jewels are Forever, edited by J. Karhumäki, H. Maurer, G. Paun and G. Rozenberg. Springer (1999) 59-71. | Zbl | MR

[6] J. Duparc, O. Finkel and J.-P. Ressayre, Computer Science and the Fine Structure of Borel Sets. Theoret. Comput. Sci. 257 (2001) 85-105. | Zbl | MR

[7] J. Engelfriet and H.J. Hoogeboom, X-Automata on ω-Words. Theoret. Comput. Sci. 110 (1993) 1-51. | Zbl | MR

[8] F. Gire, Relations Rationnelles Infinitaires, Thèse de troisième cycle, Université Paris-7, France (1981).

[9] F. Gire, Une Extension aux Mots Infinis de la Notion de Transduction Rationnelle, in 6th GI Conf. Springer, Lect. Notes Comput. Sci. 145 (1983) 123-139. | Zbl

[10] F. Gire and M. Nivat, Relations Rationnelles Infinitaires. Calcolo XXI (1984) 91-125. | Zbl | MR

[11] A.S. Kechris, Classical Descriptive Set Theory. Springer-Verlag (1995). | Zbl | MR

[12] K. Kuratowski, Topology. Academic Press, New York (1966). | Zbl | MR

[13] L.H. Landweber, Decision Problems for ω-Automata. Math. Syst. Theory 3 (1969) 376-384. | Zbl | MR

[14] H. Lescow and W. Thomas, Logical Specifications of Infinite Computations, in A Decade of Concurrency, edited by J.W. de Bakker et al. Springer, Lect. Notes Comput. Sci. 803 (1994) 583-621. | MR

[15] Y.N. Moschovakis, Descriptive Set Theory. North-Holland, Amsterdam (1980). | Zbl | MR

[16] D. Niwinski, An Example of Non Borel Set of Infinite Trees Recognizable by a Rabin Automaton, in Polish, Manuscript. University of Warsaw (1985).

[17] D. Perrin and J.-E. Pin, Infinite Words, Book in preparation, available from http://www.liafa.jussieu.fr/jep/InfiniteWords.html

[18] J.-E. Pin, Logic, Semigroups and Automata on Words. Ann. Math. Artificial Intelligence 16 (1996) 343-384. | Zbl | MR

[19] C. Prieur, Fonctions Rationnelles de Mots Infinis et Continuité, Thèse de Doctorat, Université Paris-7, France (2000).

[20] P. Simonnet, Automates et Théorie Descriptive, Ph.D. thesis, Université Paris-7, France (1992). | JFM

[21] P. Simonnet, Automate d'Arbres Infinis et Choix Borélien. C. R. Acad. Sci. Paris Sér. I Math. 316 (1993) 97-100. | Zbl

[22] L. Staiger, Hierarchies of Recursive ω-Languages. J. Inform. Process. Cybernetics EIK 22 (1986) 219-241. | Zbl | MR

[23] L. Staiger, ω-Languages, Handbook of Formal languages, Vol. 3, edited by G. Rozenberg and A. Salomaa. Springer-Verlag, Berlin (1997). | Zbl | MR

[24] W. Thomas, Automata on Infinite Objects, edited by J. Van Leeuwen. Elsevier, Amsterdam, Handb. Theoret. Comput. Sci. B (1990) 133-191. | Zbl | MR

Cité par Sources :