Undecidability of topological and arithmetical properties of infinitary rational relations
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 37 (2003) no. 2, pp. 115-126

Voir la notice de l'article provenant de la source Numdam

We prove that for every countable ordinal α one cannot decide whether a given infinitary rational relation is in the Borel class Σ α 0 (respectively Π α 0 ). Furthermore one cannot decide whether a given infinitary rational relation is a Borel set or a Σ 1 1 -complete set. We prove some recursive analogues to these properties. In particular one cannot decide whether an infinitary rational relation is an arithmetical set. We then deduce from the proof of these results some other ones, like: one cannot decide whether the complement of an infinitary rational relation is also an infinitary rational relation.

DOI : 10.1051/ita:2003013
Classification : 68Q45, 03D05, 03D55, 03E15
Keywords: infinitary rational relations, topological properties, Borel and analytic sets, arithmetical properties, decision problems
@article{ITA_2003__37_2_115_0,
     author = {Finkel, Olivier},
     title = {Undecidability of topological and arithmetical properties of infinitary rational relations},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {115--126},
     publisher = {EDP-Sciences},
     volume = {37},
     number = {2},
     year = {2003},
     doi = {10.1051/ita:2003013},
     mrnumber = {2015687},
     zbl = {1112.03312},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ita:2003013/}
}
TY  - JOUR
AU  - Finkel, Olivier
TI  - Undecidability of topological and arithmetical properties of infinitary rational relations
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2003
SP  - 115
EP  - 126
VL  - 37
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ita:2003013/
DO  - 10.1051/ita:2003013
LA  - en
ID  - ITA_2003__37_2_115_0
ER  - 
%0 Journal Article
%A Finkel, Olivier
%T Undecidability of topological and arithmetical properties of infinitary rational relations
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2003
%P 115-126
%V 37
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ita:2003013/
%R 10.1051/ita:2003013
%G en
%F ITA_2003__37_2_115_0
Finkel, Olivier. Undecidability of topological and arithmetical properties of infinitary rational relations. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 37 (2003) no. 2, pp. 115-126. doi: 10.1051/ita:2003013

Cité par Sources :