Voir la notice de l'article provenant de la source Numdam
We prove that for every countable ordinal one cannot decide whether a given infinitary rational relation is in the Borel class (respectively ). Furthermore one cannot decide whether a given infinitary rational relation is a Borel set or a -complete set. We prove some recursive analogues to these properties. In particular one cannot decide whether an infinitary rational relation is an arithmetical set. We then deduce from the proof of these results some other ones, like: one cannot decide whether the complement of an infinitary rational relation is also an infinitary rational relation.
@article{ITA_2003__37_2_115_0, author = {Finkel, Olivier}, title = {Undecidability of topological and arithmetical properties of infinitary rational relations}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {115--126}, publisher = {EDP-Sciences}, volume = {37}, number = {2}, year = {2003}, doi = {10.1051/ita:2003013}, mrnumber = {2015687}, zbl = {1112.03312}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ita:2003013/} }
TY - JOUR AU - Finkel, Olivier TI - Undecidability of topological and arithmetical properties of infinitary rational relations JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2003 SP - 115 EP - 126 VL - 37 IS - 2 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ita:2003013/ DO - 10.1051/ita:2003013 LA - en ID - ITA_2003__37_2_115_0 ER -
%0 Journal Article %A Finkel, Olivier %T Undecidability of topological and arithmetical properties of infinitary rational relations %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2003 %P 115-126 %V 37 %N 2 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ita:2003013/ %R 10.1051/ita:2003013 %G en %F ITA_2003__37_2_115_0
Finkel, Olivier. Undecidability of topological and arithmetical properties of infinitary rational relations. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 37 (2003) no. 2, pp. 115-126. doi: 10.1051/ita:2003013
Cité par Sources :