On multiplicatively dependent linear numeration systems, and periodic points
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 36 (2002) no. 3, pp. 293-314

Voir la notice de l'article provenant de la source Numdam

Two linear numeration systems, with characteristic polynomial equal to the minimal polynomial of two Pisot numbers β and γ respectively, such that β and γ are multiplicatively dependent, are considered. It is shown that the conversion between one system and the other one is computable by a finite automaton. We also define a sequence of integers which is equal to the number of periodic points of a sofic dynamical system associated with some Parry number.

DOI : 10.1051/ita:2002015
Classification : 11A63, 11A67, 11B39, 37B10, 68R15
Keywords: numeration system, Pisot number, finite automaton, periodic point

Frougny, Christiane 1

1 Université Paris 7 LIAFA, UMR 7089 CNRS 2 place Jussieu 75251 Paris Cedex 05 (France) and Université Paris 8
@article{ITA_2002__36_3_293_0,
     author = {Frougny, Christiane},
     title = {On multiplicatively dependent linear numeration systems, and periodic points},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {293--314},
     publisher = {EDP-Sciences},
     volume = {36},
     number = {3},
     year = {2002},
     doi = {10.1051/ita:2002015},
     mrnumber = {1958245},
     zbl = {1044.11004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ita:2002015/}
}
TY  - JOUR
AU  - Frougny, Christiane
TI  - On multiplicatively dependent linear numeration systems, and periodic points
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2002
SP  - 293
EP  - 314
VL  - 36
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ita:2002015/
DO  - 10.1051/ita:2002015
LA  - en
ID  - ITA_2002__36_3_293_0
ER  - 
%0 Journal Article
%A Frougny, Christiane
%T On multiplicatively dependent linear numeration systems, and periodic points
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2002
%P 293-314
%V 36
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ita:2002015/
%R 10.1051/ita:2002015
%G en
%F ITA_2002__36_3_293_0
Frougny, Christiane. On multiplicatively dependent linear numeration systems, and periodic points. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 36 (2002) no. 3, pp. 293-314. doi: 10.1051/ita:2002015

Cité par Sources :