The complexity of concatenation on deterministic and alternating finite automata
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 52 (2018) no. 2-3-4, pp. 153-168

Voir la notice de l'article provenant de la source Numdam

We study the state complexity of the concatenation operation on regular languages represented by deterministic and alternating finite automata. For deterministic automata, we show that the upper bound m 2 n - k 2 n - 1 on the state complexity of concatenation can be met by ternary languages, the first of which is accepted by an m -state DFA with k final states, and the second one by an n -state DFA with final states for arbitrary integers m , n , k , with 1 k m 1 and 1 n 1 . In the case of k m 2 , we are able to provide appropriate binary witnesses. In the case of k = m 1 and 2 , we provide a lower bound which is smaller than the upper bound just by one. We use our binary witnesses for concatenation on deterministic automata to describe binary languages meeting the upper bound 2 m + n + 1 for the concatenation on alternating finite automata. This solves an open problem stated by Fellah 𝑒𝑡 𝑎𝑙 . [ 𝐼𝑛𝑡 . 𝐽 . 𝐶𝑜𝑚𝑝𝑢𝑡 . 𝑀𝑎𝑡ℎ . 35 (1990) 117–132].

DOI : 10.1051/ita/2018011
Classification : 68Q19, 68Q45
Keywords: Regular languages, finite automata, concatenation, state complexity

Hospodár, Michal 1 ; Jirásková, Galina 1

1
@article{ITA_2018__52_2-3-4_153_0,
     author = {Hospod\'ar, Michal and Jir\'askov\'a, Galina},
     title = {The complexity of concatenation on deterministic and alternating finite automata},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {153--168},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {2-3-4},
     year = {2018},
     doi = {10.1051/ita/2018011},
     mrnumber = {3915306},
     zbl = {1486.68096},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ita/2018011/}
}
TY  - JOUR
AU  - Hospodár, Michal
AU  - Jirásková, Galina
TI  - The complexity of concatenation on deterministic and alternating finite automata
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2018
SP  - 153
EP  - 168
VL  - 52
IS  - 2-3-4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ita/2018011/
DO  - 10.1051/ita/2018011
LA  - en
ID  - ITA_2018__52_2-3-4_153_0
ER  - 
%0 Journal Article
%A Hospodár, Michal
%A Jirásková, Galina
%T The complexity of concatenation on deterministic and alternating finite automata
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2018
%P 153-168
%V 52
%N 2-3-4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ita/2018011/
%R 10.1051/ita/2018011
%G en
%F ITA_2018__52_2-3-4_153_0
Hospodár, Michal; Jirásková, Galina. The complexity of concatenation on deterministic and alternating finite automata. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 52 (2018) no. 2-3-4, pp. 153-168. doi: 10.1051/ita/2018011

Cité par Sources :